Titelangaben
Schulz, Raphael ; Ray, Nadja ; Frank, F. ; Mahato, H.S. ; Knabner, Peter:
Strong solvability up to clogging of an effective diffusion–precipitation model in an evolving porous medium.
In: European journal of applied mathematics. 28 (April 2017) 2.
- S. 179-207.
ISSN 0956-7925 ; 1469-4425
Volltext
![]() |
Link zum Volltext (externe URL): https://doi.org/10.1017/S0956792516000164 |
Kurzfassung/Abstract
In the first part of this article, we extend the formal upscaling of a diffusion–precipitation model through a two-scale asymptotic expansion in a level set framework to three dimensions. We obtain upscaled partial differential equations, more precisely, a non-linear diffusion equation with effective coefficients coupled to a level set equation. As a first step, we consider a parametrization of the underlying pore geometry by a single parameter, e.g. by a generalized “radius” or the porosity. Then, the level set equation transforms to an ordinary differential equation for the parameter. For such an idealized setting, the degeneration of the diffusion tensor with respect to porosity is illustrated with numerical simulations. The second part and main objective of this article is the analytical investigation of the resulting coupled partial differential equation–ordinary differential equation model. In the case of non-degenerating coefficients …
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data
Science (MIDS)
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Geomatik und Geomathematik |
DOI / URN / ID: | 10.1017/S0956792516000164 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Cambridge University Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 34985 |
Letzte Änderung: 17. Apr 2025 09:52
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34985/