Titelangaben
Lee, Dae Gwan ; Pfander, Götz E.
; Walnut, David:
Exponential Bases for Parallelepipeds with Frequencies Lying in a Prescribed Lattice.
In: Results in mathematics = Resultate der Mathematik. 79 (2024): 238.
ISSN 1422-6383 ; 1420-9012
Volltext
![]() |
Link zum Volltext (externe URL): https://doi.org/10.1007/s00025-024-02267-4 |
Kurzfassung/Abstract
The existence of a Fourier basis with frequencies in for the space of square integrable functions supported on a given parallelepiped in , has been well understood since the 1950s. In a companion paper, we derived necessary and sufficient conditions for a parallelepiped in to permit an orthogonal basis of exponentials with frequencies constrained to be a subset of a prescribed lattice in , a restriction relevant in many applications. In this paper, we investigate analogous conditions for parallelepipeds that permit a Riesz basis of exponentials with the same constraints on the frequencies. We provide a sufficient condition on the parallelepiped for the Riesz basis case which directly extends one of the necessary and sufficient conditions obtained in the orthogonal basis case. We also provide a sufficient condition which constrains the spectral norm of the matrix generating the parallelepiped, instead of constraining the structure of the matrix.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.1007/s00025-024-02267-4 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | [Springer International Publishing AG] |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 34882 |
Letzte Änderung: 24. Mär 2025 10:44
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34882/