Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems

Titelangaben

Verfügbarkeit überprüfen

Kreisbeck, Carolin ; Schönberger, Hidde:
Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems.
In: Nonlinear analysis : theory, methods & applications. 249 (2024): 113642. - 28 S.
ISSN 0362-546x

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (973kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.na.2024.113642

Kurzfassung/Abstract

This work revolves around properties and applications of functions whose nonlocal gradient, or more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the classical local theory, we show that this class forms an infinite-dimensional vector space. Our main result characterizes the functions with zero nonlocal gradient in terms of two simple features, namely, their values in a layer around the boundary and their average. The proof exploits recent progress in the solution theory of boundary-value problems with pseudo-differential operators. We complement these findings with a discussion of the regularity properties of such functions and give illustrative examples. Regarding applications, we provide several useful technical tools for working with nonlocal Sobolev spaces when the common complementary-value conditions are dropped. Among these, are new nonlocal Poincaré inequalities and compactness statements, which are obtained after factoring out functions with vanishing nonlocal gradient. Following a variational approach, we exploit the previous findings to study a class of nonlocal partial differential equations subject to natural boundary conditions, in particular, nonlocal Neumann-type problems. Our analysis includes a proof of well-posedness and a rigorous link with their classical local counterparts via Г-convergence as the fractional parameter tends to 1.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis
DOI / URN / ID:10.1016/j.na.2024.113642
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Pergamon
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:33695
Eingestellt am: 04. Okt 2024 10:20
Letzte Änderung: 07. Okt 2024 17:33
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33695/
AnalyticsGoogle Scholar