Titelangaben
Kreisbeck, Carolin ; Schönberger, Hidde:
Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems.
In: Nonlinear analysis : theory, methods & applications. 249 (2024): 113642.
- 28 S.
ISSN 0362-546x
Volltext
|
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Namensnennung (CC BY 4.0) . Download (973kB) | Vorschau |
|
Link zum Volltext (externe URL): https://doi.org/10.1016/j.na.2024.113642 |
Kurzfassung/Abstract
This work revolves around properties and applications of functions whose nonlocal gradient, or more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the classical local theory, we show that this class forms an infinite-dimensional vector space. Our main result characterizes the functions with zero nonlocal gradient in terms of two simple features, namely, their values in a layer around the boundary and their average. The proof exploits recent progress in the solution theory of boundary-value problems with pseudo-differential operators. We complement these findings with a discussion of the regularity properties of such functions and give illustrative examples. Regarding applications, we provide several useful technical tools for working with nonlocal Sobolev spaces when the common complementary-value conditions are dropped. Among these, are new nonlocal Poincaré inequalities and compactness statements, which are obtained after factoring out functions with vanishing nonlocal gradient. Following a variational approach, we exploit the previous findings to study a class of nonlocal partial differential equations subject to natural boundary conditions, in particular, nonlocal Neumann-type problems. Our analysis includes a proof of well-posedness and a rigorous link with their classical local counterparts via Г-convergence as the fractional parameter tends to 1.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis |
DOI / URN / ID: | 10.1016/j.na.2024.113642 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Pergamon |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 33695 |
Letzte Änderung: 07. Okt 2024 17:33
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33695/