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A B S T R A C T

This work revolves around properties and applications of functions whose nonlocal gradient, or
more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the clas-
sical local theory, we show that this class forms an infinite-dimensional vector space. Our main
result characterizes the functions with zero nonlocal gradient in terms of two simple features,
namely, their values in a layer around the boundary and their average. The proof exploits recent
progress in the solution theory of boundary-value problems with pseudo-differential operators.
We complement these findings with a discussion of the regularity properties of such functions
and give illustrative examples. Regarding applications, we provide several useful technical tools
for working with nonlocal Sobolev spaces when the common complementary-value conditions
are dropped. Among these, are new nonlocal Poincaré inequalities and compactness statements,
which are obtained after factoring out functions with vanishing nonlocal gradient. Following
a variational approach, we exploit the previous findings to study a class of nonlocal partial
differential equations subject to natural boundary conditions, in particular, nonlocal Neumann-
type problems. Our analysis includes a proof of well-posedness and a rigorous link with their
classical local counterparts via 𝛤 -convergence as the fractional parameter tends to 1.

. Introduction

It is well-known that differentiable functions with zero gradient are exactly the constant functions, that is, for any open and
onnected set 𝛺 ⊂ R𝑛 and 𝑢 ∈ 𝐶1(𝛺) it holds that

∇𝑢 = 0 in 𝛺 if and only if 𝑢 is constant on 𝛺, (1.1)

nd the same is true (almost everywhere) for Sobolev functions with weak gradients. One may wonder if this fundamental
bservation carries over when considering fractional and nonlocal derivatives instead of classical derivatives. As intriguingly basic
s the question may sound, a universal answer is not easily available and depends on the specific setting, as we will demonstrate
n the following.

In fractional and nonlocal calculus, the study of gradient operators has attained increasing attention in recent years, see
.g., [4,6,13,21,36,40,47,48]. The nonlocal gradient of a function 𝑢 ∶ R𝑛 → R is of the form

𝜌𝑢(𝑥) = ∫R𝑛
𝑢(𝑥) − 𝑢(𝑦)
|𝑥 − 𝑦|

𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌(𝑥 − 𝑦) 𝑑𝑦 (1.2)

ith a suitable kernel function 𝜌, whenever the integral is defined.
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Fig. 1. Illustration of a set 𝛺 ⊂ R𝑛 with its expansion 𝛺𝛿 , the outer and inner collar regions 𝛤𝛿 (green) and 𝛤−𝛿 (light green), and the reduced set 𝛺−𝛿 (gray).

Especially the Riesz fractional gradient, that is, 𝐷𝑠 = 𝜌𝑠 with 𝜌𝑠 ∝ | ⋅ |−(𝑛+𝑠−1) for 𝑠 ∈ (0, 1), has been popular. Not only does 𝐷𝑠

have unique natural invariance and homogeneity properties [48], it also lends itself to a distributional approach towards fractional
function spaces [13]; in fact, the function spaces associated with𝐷𝑠 in analogy to the classical Sobolev spaces coincide with the Bessel
potential spaces 𝐻𝑠,𝑝(R𝑛), as observed in [47]. The combination of these features make 𝐷𝑠 a good choice of fractional derivative,
both from the applied point of view and in the context of variational theories and PDEs.

In contrast, a compactly supported, radial kernel 𝜌 in (2.1) reduces the nonlocal interaction between all of R𝑛 to points within
an interaction range 𝛿 > 0, commonly referred to as horizon. By cutting-off the Riesz potential kernel, one obtains the finite-horizon
fractional gradient defined as

𝐷𝑠
𝛿 = 𝜌𝑠𝛿 with 𝜌𝑠𝛿 ∝

𝑤𝛿
| ⋅ |𝑛+𝑠−1

where 𝑤𝛿 ∶ R𝑛 → [0, 1] is a radial cut-off function supported in a ball of radius 𝛿; for further properties, we refer to Section 2.2.
These gradients 𝐷𝑠

𝛿 , which we simply call nonlocal gradients in the following, are the key objects in this paper. They were first
considered in [6] by Bellido, Cueto & Mora Corral (see also [14]), motivated by applications in materials science. Since the nonlocal
gradients inherit the desirable properties from the Riesz fractional gradients, while being suitable for variational problems on
bounded domains, they have become the core of a newly proposed model for nonlocal elasticity.

On a more technical note, we remark that in order to properly determine 𝐷𝑠
𝛿𝑢 in 𝛺, the function 𝑢 needs to be defined in the

set 𝛺𝛿 = {𝑥 ∈ R𝑛 ∶ dist(𝑥,𝛺) < 𝛿} enlarged by the horizon variable, and in particular, in the collar 𝛤𝛿 ∶= 𝛺𝛿 ⧵ 𝛺 of thickness
𝛿 > 0 around 𝛺, cf. Fig. 1. The values of 𝑢 in 𝛤𝛿 can be viewed as nonlocal boundary values. One defines the space 𝐻𝑠,𝑝,𝛿(𝛺) as
the functions in 𝐿𝑝(𝛺𝛿) with 𝐷𝑠

𝛿𝑢 ∈ 𝐿𝑝(𝛺); see Section 2.2 for more details. As a powerful tool, we wish to point out the translation
mechanism established in [6,14] (cf. Section 2.3). It relates the nonlocal and local setting in the sense that nonlocal gradients can
be expressed as classical ones and vice versa, allowing for statements to be carried over; in formulas, we have

𝐷𝑠
𝛿 = ∇◦(𝑄𝑠𝛿 ∗ ⋅ ) and ∇ = 𝑠

𝛿◦𝐷
𝑠
𝛿 , (1.3)

where 𝑄𝑠𝛿 is an integrable, compactly supported kernel function and 𝑠
𝛿 corresponds to the inverse of the convolution with 𝑄𝑠𝛿 . In

comparison with the analogous results for the Riesz fractional gradient [36,47], the operator 𝑠
𝛿 replaces the fractional Laplacian

of order 1−𝑠
2 .

Let us now return to and specify the question raised earlier:

Is (1.1) still true when ∇ is replaced with 𝜌?

In the case of the Riesz fractional gradient 𝜌 = 𝐷𝑠 on 𝐻𝑠,𝑝(R𝑛) for 𝑝 ∈ (1,∞), the answer is affirmative as a consequence of
the fractional Poincaré-type inequalites [47, Theorem 1.8, 1.10 and 1.11]; in fact, the functions with vanishing Riesz fractional
gradient must even be zero due to their integrability properties. The same is true when 𝜌 = 𝐷𝑠

𝛿 is considered for functions in the
complementary-value space 𝐻𝑠,𝑝,𝛿

0 (𝛺) ∶= {𝑢 ∈ 𝐻𝑠,𝑝,𝛿(R𝑛) ∶ 𝑢 = 0 a.e. in𝛺𝑐}. Here as well, a Poincaré inequality is available, see [6,
Theorem 6.2]. If the complementary-value is dropped, however, and one considers nonlocal gradients 𝜌 = 𝐷𝑠

𝛿 on 𝐻𝑠,𝑝,𝛿(𝛺) with
bounded 𝛺, the picture changes substantially.

This paper revolves around the class of functions with zero nonlocal gradient

𝑁𝑠,𝑝,𝛿(𝛺) ∶= {ℎ ∈ 𝐻𝑠,𝑝,𝛿(𝛺) ∶ 𝐷𝑠
𝛿ℎ = 0 a.e. in 𝛺},

which turns out to be non-trivial. Indeed, we show that there exist functions in 𝑁𝑠,𝑝,𝛿(𝛺) that are non-constant in any open
subset of 𝛺 (Proposition 3.1) and establish that they are numerous in the sense that 𝑁𝑠,𝑝,𝛿(𝛺) forms an infinite-dimensional space
(Proposition 3.3).

Knowing that the set 𝑁𝑠,𝑝,𝛿(𝛺) consists of more than just constant functions stirs up interesting new issues for further
investigation. We first give a characterization of all the elements of 𝑁𝑠,𝑝,𝛿(𝛺), which provides a deeper understanding of its
2
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properties. With this at hand, we then highlight the role of the functions with zero nonlocal gradients in the theory of the
spaces 𝐻𝑠,𝑝,𝛿(𝛺) and discuss applications in nonlocal differential inclusion problems and variational problems on 𝐻𝑠,𝑝,𝛿(𝛺) with

eumann-type boundary conditions. Here is a more detailed overview of our main new findings.

Characterization of N s,p,𝜹(𝜴). While the set of functions in 𝑊 1,𝑝(𝛺) with zero gradient corresponds to the set of constant
functions and can thus, be identified with R by taking mean values, the characterization of 𝑁𝑠,𝑝,𝛿(𝛺) involves an additional feature
ue to boundary effects of the nonlocal interactions. Roughly speaking, two ingredients are necessary to uniquely identify the
lements of 𝑁𝑠,𝑝,𝛿(𝛺), that is, an average or mean-value condition on 𝛺 and boundary values in the collar region 𝛤𝛿 ∶= 𝛺𝛿 ⧵𝛺.

We start from the observation that 𝑁𝑠,𝑝,𝛿(𝛺) consists of all functions ℎ ∈ 𝐿𝑝(𝛺𝛿) satisfying

𝑄𝑠𝛿 ∗ ℎ = 𝑐 a.e. in 𝛺 and ℎ = 𝑔 a.e. in 𝛤𝛿 , (1.4)

for a given 𝑔 ∈ 𝐿𝑝(𝛤𝛿) and 𝑐 ∈ R. This is a consequence of the translation mechanism (1.3). Hence, the problem reduces to finding
the solutions of (1.4). Since 𝑠

𝛿 from (1.3) is in fact a pseudo-differential operator, our proof strategy is to rewrite (1.4) equivalently
as a pseudo-differential Dirichlet problem and to exploit the recent progress in their existence, uniqueness, and regularity theory.
Precisely, the properties of 𝑠

𝛿 make it fit into the setting of the works by Grubb [32] and by Abels & Grubb [1]. Given that the
regularity results are sensitive to the relation between the fractional and integrability parameters 𝑠 and 𝑝, there are two qualitatively
different regimes to distinguish.

Our main characterization result (see Theorem 3.8 and Proposition 3.12) states the following:

(i) If 𝑝 ∈ (1, 2
1−𝑠 ) (including the case 𝑝 = 2), then 𝑁𝑠,𝑝,𝛿(𝛺) consists of the unique solutions to (1.4), which exist for every constant

𝑐 ∈ R and given boundary values 𝑔 ∈ 𝐿𝑝(𝛤𝛿).
(ii) For 𝑝 ∈ [ 2

1−𝑠 ,∞), only those (unique) solutions to (1.4) that lie also in 𝐿𝑝(𝛺𝛿) constitute 𝑁𝑠,𝑝,𝛿(𝛺).

n alternative way of phrasing (𝑖) is to say that

𝑁𝑠,𝑝,𝛿(𝛺) is isomorphic to R × 𝐿𝑝(𝛤𝛿),

with the isomorphism 𝑁𝑠,𝑝,𝛿(𝛺) ∋ ℎ ↦ (∫𝛺 𝑄
𝑠
𝛿 ∗ ℎ 𝑑𝑥, ℎ|𝛤𝛿 ). This formalizes the statement that an average condition on 𝛺 and the

boundary values in a boundary layer of thickness 𝛿 are the characteristics for any function with zero nonlocal gradient. Besides,
we show that ℎ ↦ (∫𝛺 ℎ 𝑑𝑥, ℎ|𝛤𝛿 ) is a isomorphism between 𝑁𝑠,𝑝,𝛿(𝛺) and R × 𝐿𝑝(𝛤𝛿) as well, which indicates that even a simple
mean-value condition along with the values in 𝛤𝛿 suffices to pin down the elements of 𝑁𝑠,𝑝,𝛿(𝛺). Part (𝑖𝑖) implies that the previous
dentifications with R × 𝐿𝑝(𝛤𝛿) remain injective when 𝑝 ∈ [ 2

1−𝑠 ,∞), however, surjectivity generally fails (Remark 3.13).

Technical tools in H s,p,𝜹(𝜴) modulo functions of zero nonlocal gradient. The set 𝑁𝑠,𝑝,𝛿(𝛺) can be used to develop new functional
analytic tools for the spaces 𝐻𝑠,𝑝,𝛿(𝛺) without complementary-values. Unlike for 𝐻𝑠,𝑝,𝛿(R𝑛) and 𝐻𝑠,𝑝,𝛿

0 (𝛺), however, analogues of the
elevant tools and estimates in classical Sobolev spaces only hold in the quotient space 𝐻𝑠,𝑝,𝛿(𝛺)∕𝑁𝑠,𝑝,𝛿(𝛺), meaning modulo elements
n 𝑁𝑠,𝑝,𝛿(𝛺). With that in mind, we obtain the following:

(a) Refined translation mechanism for functions on bounded domains: We show in Theorem 4.1 that the quotient space 𝐻𝑠,𝑝,𝛿(𝛺)∕
𝑁𝑠,𝑝,𝛿(𝛺) is isometrically isomorphic to 𝑊 1,𝑝(𝛺) modulo constants, meaning that one can identify 𝐻𝑠,𝑝,𝛿(𝛺) and 𝑊 1,𝑝(𝛺) up
to functions with zero (nonlocal) gradient. The isomorphism turns nonlocal gradients into gradients.

(b) Extension of functions from 𝐻𝑠,𝑝,𝛿(𝛺) to 𝐻𝑠,𝑝,𝛿(R𝑛) up to 𝑁𝑠,𝑝,𝛿(𝛺): Even though an exact extension of functions in 𝐻𝑠,𝑝,𝛿(𝛺) to
R𝑛 is generally not possible (cf. Example 3.4), there exists a bounded linear operator 𝑠𝛿 ∶ 𝐻𝑠,𝑝,𝛿(𝛺) → 𝐻𝑠,𝑝,𝛿(R𝑛), such that
𝑠𝛿𝑢 differs from 𝑢 in 𝛺𝛿 merely by a function with zero nonlocal gradient.

(c) Nonlocal Poincaré-type inequalities: As a major tool, we prove different nonlocal versions of Poincaré inequalities. If 𝑝 ∈ (1, 2
1−𝑠 ),

there exists a constant 𝐶 > 0 such that

‖𝑢‖𝐿𝑝(𝛺𝛿 ) ≤ 𝐶‖𝐷𝑠
𝛿𝑢‖𝐿𝑝(𝛺;R𝑛)

for all 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) satisfying 𝑢 = 0 in 𝛤𝛿 and one of the averaging conditions ∫𝛺 𝑢 𝑑𝑥 = 0 or ∫𝛺 𝑄
𝑠
𝛿 ∗ 𝑢 𝑑𝑥 = 0. The same

estimate holds for all 𝑝 ∈ (1,∞) and 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) whose metric projection onto 𝑁𝑠,𝑝,𝛿(𝛺) vanishes.
(d) 𝐿𝑝-compactness modulo 𝑁𝑠,𝑝,𝛿(𝛺). Based on (𝑐), we derive the following Rellich-Kondrachov-type compactness: If (𝑢𝑗 )𝑗 ⊂

𝐻𝑠,𝑝,𝛿(𝛺) is a bounded sequence such that the metric projection of 𝑢𝑗 onto 𝑁𝑠,𝑝,𝛿(𝛺) vanishes for all 𝑗, then (𝑢𝑗 )𝑗 is precompact
in 𝐿𝑝(𝛺𝛿).

We remark that for the complementary-value spaces 𝐻𝑠,𝑝,𝛿
0 (𝛺) the analogues of (𝑎), (𝑐), and (𝑑) have recently been established

in [6,14]. The approach there relies on Fourier techniques, given that the functions in 𝐻𝑠,𝑝,𝛿
0 (𝛺) are defined on the whole of R𝑛.

Variational problems on N s,p,𝜹(𝜴)⟂ and nonlocal boundary-value problems. A significant application of the aforementioned
tools are the existence theory and asymptotic analysis of nonlocal PDEs subject to Neumann-type boundary conditions. Precisely,
we adopt a variational viewpoint and prove the existence of solutions to the problem

Minimize 1 |

|𝐷𝑠
𝛿𝑢
|

|

2
𝑑𝑥 − 𝐹𝑢 𝑑𝑥 over 𝑁𝑠,2,𝛿(𝛺)⟂ ⊂ 𝐻𝑠,2,𝛿(𝛺), (1.5)
3

2 ∫𝛺 | | ∫𝛺𝛿



Nonlinear Analysis 249 (2024) 113642C. Kreisbeck and H. Schönberger

m

v

f
t
f
i
d
n

a
f
i
i
i

t
t
a
c
p
l

2

s

2

b

where 𝛺 ⊂ R𝑛 is a bounded Lipschitz domain, 𝐹 ∈ 𝐿2(𝛺𝛿), and 𝑁𝑠,2,𝛿(𝛺)⟂ denotes the orthogonal complement of 𝑁𝑠,2,𝛿(𝛺); note that
𝑁𝑠,2,𝛿(𝛺) plays the same role as the set of constant functions in the variational formulation of the Neumann problem with classical
gradients. In fact, a remarkable aspect of our framework is that one can also handle more general vector-valued nonlinear problems
with 𝑝 ∈ (1,∞) and energy densities that are either quasiconvex or polyconvex, see Theorem 6.1 and Remark 6.2.

To draw the connection between (1.5) and PDEs with Neumann-type boundary conditions, one assumes the nonlocal compati-
bility condition

∫𝛺𝛿
𝐹ℎ𝑑𝑥 = 0 for all ℎ ∈ 𝑁𝑠,2,𝛿(𝛺),

under which the solutions to (1.5) weakly satisfy Euler–Lagrange equations with a nonlocal boundary operator  𝑠
𝛿 featured in the

collar regions, see (6.6). In fact, this boundary operator was recently introduced by Bellido, Cueto, Foss & Radu [3], where the
authors derive, amongst others, a new integration by parts formula in the spirit of [24].

Our second main result regarding (1.5) confirms the expectation that these problems localize as the fractional parameter 𝑠 tends
to 1, that is, they converge to their classical counterparts with usual gradients. Working in the framework of variational convergence,
we obtain that the 𝛤 -limit of the functional in (1.5) with respect to strong convergence in 𝐿2(𝛺𝛿) is

1
2 ∫𝛺

|∇𝑢|2 𝑑𝑥 − ∫𝛺
𝐹𝑢 𝑑𝑥 for 𝑢 ∈ 𝑊 1,2(𝛺) with ∫𝛺

𝑢 𝑑𝑥 = 0,

see Theorem 6.4; again, this also holds in the more general setting mentioned before. In the case that 𝐹 satisfies the classical
compatibility condition ∫𝛺 𝐹 𝑑𝑥 = 0, we obtain, in particular, that the minimizers of (1.5) converge in 𝐿2(𝛺) as 𝑠 ↑ 1 to the unique

ean-zero solution of the standard Neumann problem
{

−𝛥𝑢 = 𝐹 in 𝛺,
𝜕𝑢
𝜕𝜈 = 0 on 𝜕𝛺.

Localization via rigorous limit passages is a general theme in the study of fractional and nonlocal calculus, not least because they
serve as important consistency checks for new problems and models; we refer e.g., to [5,14] for 𝑠 ↑ 1, and [8,39,40] for limits with
anishing horizon 𝛿 → 0.

Let us close by pointing out some literature on Neumann problems in other fractional and nonlocal set-ups, involving the
ractional Laplacian and more general integral and integro-differential operators, see e.g., [2,9,20,24,32,41] and also the references
herein. One of the works we wish to highlight is [24], where Dipierro, Ros-Oton & Valdinoci introduce a Neumann problem for the
ractional Laplacian by a natural notion of normal nonlocal derivative. These results have been refined, expanded and generalized
n various directions, e.g., in [2,22,23,27]. Closely related are also the recent results on nonlocal trace spaces [25,33,34,50]. The
istinguishing factor in our work, is the central role of a nonlocal gradient object, which enables us to handle a broad variety of
onlinearities.

Outline. We have organized this paper as follows. After introducing notations and providing theoretical background and useful
uxiliary results in Section 2, Section 3 is centered around a solid understanding of the functions with vanishing finite-horizon
ractional gradient. Our analysis includes proofs that non-constant functions with vanishing nonlocal gradient exist and that 𝑁𝑠,𝑝,𝛿(𝛺)
s an infinite-dimensional space, see Section 3.1. The main theorems about the characterization of 𝑁𝑠,𝑝,𝛿(𝛺) are stated and proven
n Section 3.2. We round off this section with a discussion of regularity properties of functions with zero nonlocal gradient and give
llustrative examples in Section 3.3.

The second part of the paper presents different implications and applications involving 𝑁𝑠,𝑝,𝛿(𝛺). In Section 4, we establish
he technical tools (𝑎)–(𝑑) for working in the nonlocal function spaces 𝐻𝑠,𝑝,𝛿(𝛺). The previous findings are then used in Section 5
o contribute to the theory of nonlocal differential inclusions. We show that rigidity statements as well as existence results for
pproximate solutions can be carried over from the classical setting via the translation mechanism. Section 6 features the new
lass of variational problems on 𝑁𝑠,𝑝,𝛿(𝛺)⟂, which relates to nonlocal Neumann-type problems. A proof of well-posedness for these
roblems is contained in Section 6.1, while Section 6.2 establishes the rigorous link with the classical local problems through a
ocalization result via 𝛤 -convergence.

. Preliminaries

In this section, we introduce the relevant notations and collect the necessary background on nonlocal gradients and function
paces along with some useful technical tools.

.1. Notation

Unless specified otherwise in the following, we take 𝑠 ∈ (0, 1), 𝑝 ∈ [1,∞], and 𝛿 > 0. The Euclidean norm of 𝑥 ∈ R𝑛 is denoted
y |𝑥| and

⟨𝑥⟩ ∶=
√

1 + |𝑥|2.

We use the notation 𝑙 with 𝐴 ∈ R𝑚×𝑛 for the linear function 𝑙 (𝑥) = 𝐴𝑥 with 𝑥 ∈ R𝑛.
4
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Moreover, 𝐸𝑐 ∶= R𝑛 ⧵ 𝐸 is the complement of a set 𝐸 ⊂ R𝑛, 𝐸 is its closure, and |𝐸| is its Lebesgue measure, provided 𝐸 is
measurable. We use the notation 1𝐸 for the indicator function of a set 𝐸 ⊂ R𝑛, i.e., 1𝐸 (𝑥) = 1 if 𝑥 ∈ 𝐸 and 1𝐸 (𝑥) = 0 otherwise.

henever convenient, we identify a function on a subset of R𝑛 with its trivial extension by zero without explicit mention. If we
ish to highlight the trivial extension, we use an extra indicator function, writing e.g., 1𝐸𝑓 ∶ R𝑛 → R for the zero extension of
∶ 𝐸 → R. The restriction of any 𝑓 ∶ 𝐸 → R to a subset 𝐸′ ⊂ 𝐸 is denoted by 𝑓 |𝐸′ .
By 𝐵𝜌(𝑥) = {𝑦 ∈ R𝑛 ∶ |𝑥 − 𝑦| < 𝜌}, we denote the ball centered at 𝑥 ∈ R𝑛 with radius 𝜌 > 0, and dist(𝑥,𝐸) is the distance between

point 𝑥 ∈ R𝑛 and a set 𝐸 ⊂ R𝑛. For a domain 𝛺 ⊂ R𝑛, i.e., open and connected set, we introduce its expansion and reduction by
hickness 𝛿 as

𝛺𝛿 ∶= 𝛺 + 𝐵𝛿(0) = {𝑥 ∈ R𝑛 ∶ 𝑑𝑖𝑠𝑡(𝑥,𝛺) < 𝛿} and 𝛺−𝛿 ∶= {𝑥 ∈ 𝛺 ∶ 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝛺) > 𝛿},

here 𝜕𝛺 is the boundary of 𝛺, and define

𝛤𝛿 ∶= 𝛺𝛿 ⧵𝛺 and 𝛤−𝛿 ∶= 𝛺 ⧵𝛺−𝛿

as the inner and outer collars of 𝛺, respectively. Further, let 𝛤±𝛿 ∶= 𝛤𝛿 ∪ 𝛤−𝛿 ∪ 𝜕𝛺 be the double layer around the boundary of 𝛺.

For an illustration of this geometric set-up, see Fig. 1.
Let 𝑈 ⊂ R𝑛 be an open set. The notation 𝐶∞

𝑐 (𝑈 ) stands for the space of smooth functions 𝑈 ↦ R with compact support, which
will often be identified with their trivial extensions to R𝑛 by zero, and Lip(𝜓) is the Lipschitz constant of a function 𝜓 ∶ R𝑛 → R.
Throughout the paper, we use the standard notation for Lebesgue- and Sobolev-spaces 𝐿𝑝(𝑈 ) and 𝑊 1,𝑝(𝑈 ) with 𝑝 ∈ [1,∞]. For the
inner product on 𝐿2(𝑈 ), we write ⟨⋅, ⋅⟩𝐿2(𝑈 ). Notice that each of the function spaces defined above, as well as those introduced later,
can be extended componentwise to vector-valued functions; the target set is then reflected in the notation, for example, 𝐿𝑝(𝑈 ;R𝑚).
Moreover, the restriction of a function space is denoted, for example, as 𝐶∞(R𝑛)|𝑈 ∶= {𝑢|𝑈 ∶ 𝑢 ∈ 𝐶∞(R𝑛)}.

For an integrable function 𝑓 ∈ 𝐿1(R𝑛), the Fourier transform is defined as

𝑓 (𝜉) ∶= ∫R𝑛
𝑓 (𝑥) 𝑒−2𝜋𝑖𝑥⋅𝜉 𝑑𝑥, 𝜉 ∈ R𝑛.

It is well-known that the Fourier transform is an isomorphism from the Schwartz space (R𝑛;C) onto itself, which can be extended
to the spaces 𝐿2(R𝑛;C) and the space of tempered distributions  ′(R𝑛;C) by density and duality, respectively. The inverse Fourier
transform of 𝑓 , denoted 𝑓∨, corresponds to 𝑥 ↦ 𝑓 (−𝑥). For more background on Fourier analysis, see e.g., [26,29].

Lastly, 𝐶 denotes a generic constant, which may change from one estimate to the next without further mention. To indicate that
a constant depends on specific quantities, they are added in brackets.

2.2. Nonlocal gradients and Sobolev spaces

Let us now introduce in detail the key objects in this paper, namely, a class of fractional gradients with finite horizon, and the
associated nonlocal Sobolev spaces. Our presentation follows along the lines of [6,14] (see also [7]), where we also refer to for more
details.

The truncated Riesz fractional gradient, simply referred to as nonlocal gradient, and the corresponding divergence for smooth
functions are defined as follows: For 𝑠 ∈ (0, 1) and 𝛿 > 0, the nonlocal gradient of 𝜑 ∈ 𝐶∞(R𝑛) is

𝐷𝑠
𝛿𝜑(𝑥) = ∫R𝑛

𝜑(𝑥) − 𝜑(𝑦)
|𝑥 − 𝑦|

𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌𝑠𝛿(𝑥 − 𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑛, (2.1)

and the nonlocal divergence of 𝜓 ∈ 𝐶∞(R𝑛;R𝑛) is

div𝑠𝛿 𝜓(𝑥) = ∫R𝑛
𝜓(𝑥) − 𝜓(𝑦)

|𝑥 − 𝑦|
⋅
𝑥 − 𝑦
|𝑥 − 𝑦|

𝜌𝑠𝛿(𝑥 − 𝑦) 𝑑𝑦 for 𝑥 ∈ R𝑛;

here, the kernel function 𝜌𝑠𝛿 is given by

𝜌𝑠𝛿(𝑧) = 𝑐𝑛,𝑠,𝛿
𝑤𝛿(𝑧)

|𝑧|𝑛+𝑠−1
for 𝑧 ∈ R𝑛 ⧵ {0},

ith 𝑤𝛿 ∶ R𝑛 → [0,∞) a non-negative cut-off function satisfying the hypotheses

(H1) 𝑤𝛿 is radial, i.e., 𝑤𝛿 = 𝑤𝛿(| ⋅ |) with a function 𝑤𝛿 ∶ R → [0,∞);
(H2) 𝑤𝛿 is smooth and compactly supported in 𝐵𝛿(0), i.e., 𝑤𝛿 ∈ 𝐶∞

𝑐 (𝐵𝛿(0));
(H3) 𝑤𝛿 is normalized around the origin, i.e., 𝑤𝛿 = 1 on 𝐵𝜇𝛿(0) for some 𝜇 ∈ (0, 1);
(H4) 𝑤𝛿 is radially decreasing, i.e., 𝑤𝛿(𝑧) ≥ 𝑤𝛿(𝑧̃) if |𝑧| ≤ |𝑧̃|,

and the scaling constant 𝑐𝑛,𝑠,𝛿 > 0 is such that

𝑐𝑛,𝑠,𝛿
𝑤𝛿(𝑧) 𝑑𝑧 = 𝑛. (2.2)
5

∫𝐵𝛿 (0) |𝑧|𝑛+𝑠−1
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Remark 2.1. (a) Note that the scaling factor 𝑐𝑛,𝑠,𝛿 , determined by (2.2), is the same as in [7] in order to ensure that the nonlocal
derivative of any linear map 𝑙𝐴 with 𝐴 ∈ R𝑚×𝑛 is equal to 𝐴, see [7, Proposition 4.1]. This choice is slightly different from the
scaling in [14], but provides no substantial issues for the application of these results, as discussed in Remark 2.3 below.

(b) An alternative way of expressing the nonlocal gradient in (2.1) is as a principle value integral. In view of the radial symmetry
of 𝑤𝛿 from (H1), one has for 𝑥 ∈ R𝑛 that

𝐷𝑠
𝛿𝜑(𝑥) = p.v. ∫𝐵(𝑥,𝑟)𝑐

𝜑(𝑦)𝑑𝑠𝛿 (𝑥 − 𝑦) 𝑑𝑦 ∶= lim
𝑟↓0 ∫𝐵(𝑥,𝑟)𝑐

𝜑(𝑦)𝑑𝑠𝛿 (𝑥 − 𝑦) 𝑑𝑦 (2.3)

ith 𝑑𝑠𝛿 (𝑧) = −𝑐𝑛,𝑠,𝛿
𝑧𝑤𝛿 (𝑧)
|𝑧|𝑛+𝑠+1

for 𝑧 ∈ R𝑛 ⧵ {0}. This shows, in particular, that 𝐷𝑠
𝛿𝜑(𝑥) can be written as the convolution of 𝑑𝑠𝛿 with 𝜑,

hen 𝑥 ∉ supp(𝜑). ▵

The above definitions can be extended to locally integrable functions via a distributional approach. Indeed, for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) and

∈ 𝐶∞
𝑐 (R𝑛;R𝑛), the integration by parts formula

∫R𝑛
𝐷𝑠
𝛿𝜑 ⋅ 𝜓 𝑑𝑥 = −∫R𝑛

𝜑 div𝑠𝛿 𝜓 𝑑𝑥

olds. Based on this, we then define 𝑣 ∈ 𝐿1
𝑙𝑜𝑐(𝛺;R𝑛) as the weak nonlocal gradient of 𝑢 ∈ 𝐿1

𝑙𝑜𝑐 (𝛺𝛿), written as 𝑣 = 𝐷𝑠
𝛿𝑢, if

∫𝛺
𝑣 ⋅ 𝜓 𝑑𝑥 = −∫𝛺𝛿

𝑢 div𝑠𝛿 𝜓 𝑑𝑥 for all 𝜓 ∈ 𝐶∞
𝑐 (𝛺;R𝑛); (2.4)

the weak nonlocal divergence is defined analogously. In parallel to classical Sobolev spaces, one can introduce nonlocal Sobolev
spaces as follows.

Definition 2.2 (Nonlocal Sobolev Spaces). Let 𝑠 ∈ (0, 1), 𝛿 > 0, 𝑝 ∈ [1,∞], and let 𝛺 ⊂ R𝑛 be open. The nonlocal Sobolev space
𝐻𝑠,𝑝,𝛿(𝛺) is defined as

𝐻𝑠,𝑝,𝛿(𝛺) ∶= {𝑢 ∈ 𝐿𝑝(𝛺𝛿) ∶ 𝐷𝑠
𝛿𝑢 ∈ 𝐿𝑝(𝛺;R𝑛)},

endowed with the norm

‖𝑢‖𝐻𝑠,𝑝,𝛿 (𝛺) =
(

‖𝑢‖𝑝𝐿𝑝(𝛺𝛿 ) + ‖𝐷𝑠
𝛿𝑢‖

𝑝
𝐿𝑝(𝛺;R𝑛)

)
1
𝑝 .

These spaces can be equivalently defined via density if 𝛺 is a bounded Lipschitz domain or 𝛺 = R𝑛, see [14, Theorem 1]. A
more detailed study of these spaces, including results such as Leibniz rules, Poincaré inequalities and compact embeddings can be
found in [6,14].

When working with functions on the full space R𝑛, we will often exploit the connection between the nonlocal Sobolev spaces of
Definition 2.2 and the well-known Bessel potential spaces, which are defined for any 𝑡 ∈ R and 𝑝 ∈ (1,∞) as

𝐻 𝑡,𝑝(R𝑛) =
{

𝑢 ∈  ′(R𝑛) ∶
(

⟨ ⋅ ⟩𝑡𝑢̂
)∨ ∈ 𝐿𝑝(R𝑛)

}

, (2.5)

with the norm ‖𝑢‖𝐻 𝑡,𝑝(R𝑛) = ‖

(

⟨ ⋅ ⟩𝑡𝑢̂
)∨
‖𝐿𝑝(R𝑛) and the notation 𝐻 𝑡 ∶= 𝐻 𝑡,2; for more on the theory of Bessel potential spaces, see

e.g., [30, Chapter 1.3.1] or [51]. Indeed, it holds for all 𝑝 ∈ (1,∞) and 𝑠 ∈ (0, 1) that

𝐻𝑠,𝑝,𝛿(R𝑛) = 𝐻𝑠,𝑝(R𝑛),

with equivalent norms. This follows from the observation that 𝐻𝑠,𝑝(R𝑛) coincides with the space of functions in 𝐿𝑝(R𝑛) with a weak
Riesz fractional gradient in 𝐿𝑝(R𝑛;R𝑛) (cf. [47, Theorem 1.7] together with the density result in [12, Theorem A.1]), along with the
fact that the latter is again the same as 𝐻𝑠,𝑝,𝛿(R𝑛) due to [14, Lemma 5].

We mention here some additional properties of the Bessel potential spaces that we need. First of all, for each 𝑡 > 0, there is a
𝑓𝑡 ∈ 𝐿1(R𝑛) with ‖𝑓𝑡‖𝐿1(R𝑛) = 1 and 𝑓𝑡 = ⟨⋅⟩−𝑡 (𝑓𝑡 is a rescaled version of the Bessel potential function, see [30, Chapter 1.2.2]).
Therefore, for any 𝑡1 < 𝑡2 we find with Young’s convolution inequality

‖𝑢‖𝐻 𝑡1 ,𝑝(R𝑛) = ‖

(

⟨ ⋅ ⟩𝑡1 𝑢̂
)∨
‖𝐿𝑝(R𝑛) = ‖𝑓𝑡2−𝑡1 ∗

(

⟨ ⋅ ⟩𝑡2 𝑢̂
)∨
‖𝐿𝑝(R𝑛)

≤ ‖

(

⟨ ⋅ ⟩𝑡2 𝑢̂
)∨
‖𝐿𝑝(R𝑛) = ‖𝑢‖𝐻 𝑡2 ,𝑝(R𝑛).

(2.6)

econdly, if (𝑢𝑗 )𝑗 ⊂ 𝐻 𝑡,𝑝(R𝑛) is a bounded sequence and 𝑡 > 0, then we find that

𝑢𝑗 = 𝑓𝑡 ∗
(

⟨ ⋅ ⟩𝑡𝑢̂𝑗
)∨,

hich is the convolution of an 𝐿1-function with a bounded sequence in 𝐿𝑝, and hence, precompact in 𝐿𝑝loc(R
𝑛) by the Fréchet-

olmogorov criterion (see e.g., [11, Corollary 4.28]). As such, 𝐻 𝑡,𝑝(R𝑛) is compactly embedded into 𝐿𝑝loc(R
𝑛). In fact, when 𝑡𝑝 > 𝑛,

e find that 𝑓𝑡 ∈ 𝐿𝑝′ (R𝑛) with 𝑝′ the dual exponent of 𝑝 (cf. [30, Theorem 1.3.5 (c)]), so that one can even deduce the compact
mbedding of 𝐻 𝑡,𝑝(R𝑛) into 𝐶loc(R𝑛) due to the Arzelà-Ascoli theorem.

In the following, we also use the complementary value space of 𝐻 𝑡,𝑝(R𝑛) for 𝑡 ≥ 0, which consists of functions with zero values
utside of an open set 𝑉 ⊂ R𝑛 and is denoted by

𝑡,𝑝 𝑡,𝑝 𝑛 𝑐
6

𝐻0 (𝑉 ) = {𝑢 ∈ 𝐻 (R ) ∶ 𝑢 = 0 a.e. in 𝑉 }.
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2.3. Translation operators

In this section, we present a method that will be frequently used, and further refined (see Section 4.1) in this paper, namely, a
ranslation procedure that allows switching between nonlocal gradients and classical gradients. The following auxiliary results are
ainly taken from [14]; related statements about the Riesz fractional gradient have been established in [36].

Our starting point is the following finite-horizon analogue of the Riesz potential from [6], defined by

𝑄𝑠𝛿 ∶ R𝑛 ⧵ {0} → R, 𝑄𝑠𝛿(𝑥) = 𝑐𝑛,𝑠,𝛿 ∫

𝛿

|𝑥|

𝑤𝛿(𝑟)
𝑟𝑛+𝑠

𝑑𝑟. (2.7)

t holds that 𝑄𝑠𝛿 is integrable with compact support in 𝐵𝛿(0) and, a simple calculation yields that, due to the choice of scaling,

‖𝑄𝑠𝛿‖𝐿1(R𝑛) = 1. (2.8)

emark 2.3. (a) With the scaling constant 𝑐𝑛,𝑠 used in [14], one obtains instead of (2.8) that [0, 1) ∋ 𝑠 ↦ ‖𝑄𝑠𝛿‖𝐿1(R𝑛) is continuous
with lim𝑠→1 ‖𝑄𝑠𝛿‖𝐿1(R𝑛) = 1, see [14, Lemma 6]. This shows that the two different scaling regimes are comparable uniformly in 𝑠.

(b) The Fourier transform of 𝑄̂𝑠𝛿 is a smooth, positive and radial function. Moreover, the difference between 𝑄̂𝑠𝛿 and 𝜉 ↦ |2𝜋𝜉|−(1−𝑠)

s a Schwartz function for |𝜉| ≥ 1, see [6] and [14, Remark 2 and Lemma 11]. ▵

An essential observation about the kernel function 𝑄𝑠𝛿 regards its relation with the nonlocal gradient 𝐷𝑠
𝛿 , that is,

𝐷𝑠
𝛿𝜑 = ∇(𝑄𝑠𝛿 ∗ 𝜑) = 𝑄𝑠𝛿 ∗ ∇𝜑 for any 𝜑 ∈ 𝐶∞

𝑐 (R𝑛).

his identity can be extended to the Sobolev spaces in a weak sense, as shown in [14, Theorem 2 (𝑖)].

emma 2.4 (From Nonlocal to Local Gradients). Let 𝑠 ∈ (0, 1), 𝛿 > 0, 𝑝 ∈ [1,∞], and 𝛺 ⊂ R𝑛 be open. Then, the linear map
𝑠𝛿 ∶ 𝐻

𝑠,𝑝,𝛿(𝛺) → 𝑊 1,𝑝(𝛺), 𝑢 ↦ 𝑄𝑠𝛿 ∗ 𝑢 is bounded (uniformly with respect to 𝑠) with

(∇◦𝑠𝛿)𝑢 = ∇(𝑠𝛿𝑢) = 𝐷𝑠
𝛿𝑢 for every 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺).

The convolution with the kernel 𝑄𝑠𝛿 enables us to pass from the nonlocal Sobolev space to the classical one. To go back, we
consider the operator from [14], given by

𝑠
𝛿 ∶ (R𝑛) ↦ (R𝑛), ̂𝑠

𝛿𝜑 =
𝜑̂

𝑄𝑠𝛿
. (2.9)

t is proven in [14, Theorem 2 (𝑖𝑖)] that this operator can be extended to the Sobolev space as the inverse of convolution with 𝑄𝑠𝛿 .

Lemma 2.5 (From Local to Nonlocal Gradients). Let 𝑠 ∈ (0, 1), 𝛿 > 0, 𝑝 ∈ [1,∞]. Then, 𝑠
𝛿 in (2.9) can be extended to an isomorphism

between 𝑊 1,𝑝(R𝑛) and 𝐻𝑠,𝑝,𝛿(R𝑛) which satisfies (𝑠
𝛿 )

−1 = 𝑠𝛿 . In particular,

(𝐷𝑠
𝛿◦

𝑠
𝛿 )𝑣 = 𝐷𝑠

𝛿(
𝑠
𝛿𝑣) = ∇𝑣 for every 𝑣 ∈ 𝑊 1,𝑝(R𝑛). (2.10)

We mention a useful alternative representation of 𝑠
𝛿 involving the kernel function of the nonlocal fundamental theorem of

calculus in [6, Theorem 4.5]. It holds that

𝑠
𝛿𝜑(𝑥) = ∫R𝑛

𝑉 𝑠
𝛿 (𝑥 − 𝑦) ⋅ ∇𝜑(𝑦) 𝑑𝑦 =∶ (𝑉 𝑠

𝛿 ∗ ∇𝜑)(𝑥) for 𝜑 ∈ 𝐶∞
𝑐 (R𝑛), (2.11)

here 𝑉 𝑠
𝛿 ∈ 𝐶∞(R𝑛 ⧵ {0};R𝑛) ∩ 𝐿1

𝑙𝑜𝑐(R
𝑛;R𝑛) is a vector-radial function, i.e., 𝑉 𝑠

𝛿 (𝑥) = 𝑥𝑓 𝑠𝛿 (|𝑥|) for 𝑥 ∈ R𝑛 ⧵ {0} with 𝑓 𝑠𝛿 ∶ (0,∞) → R,
cf. [14, Remark 4 d)] as well as [6, Theorem 5.9] for more properties of 𝑉 𝑠

𝛿 .
When 𝑝 ∈ (1,∞), one can deduce some more general properties for 𝑠

𝛿 using Fourier methods. To this end, we recall that by
Remark 2.3 (b), there are 𝑅𝑠𝛿 , 𝑆

𝑠
𝛿 ∈ (R𝑛) such that

𝑄̂𝑠𝛿(𝜉) =
1

|2𝜋𝜉|1−𝑠
+ 𝑅𝑠𝛿(𝜉) and 1

𝑄̂𝑠𝛿(𝜉)
= |2𝜋𝜉|1−𝑠 + 𝑆𝑠𝛿 (𝜉) for |𝜉| ≥ 1. (2.12)

As a consequence of the Mihlin-Hörmander theorem (e.g., [29, Theorem 6.2.7]), using the smoothness and positivity of 𝑄̂𝑠𝛿 locally
and the decay of 𝑅𝑠𝛿 , 𝑆

𝑠
𝛿 for large 𝜉 to obtain the desired estimates similarly to [14, Lemma 8], it follows that both

⟨⋅⟩1−𝑠𝑄̂𝑠𝛿 and 1
⟨⋅⟩1−𝑠𝑄̂𝑠𝛿

(2.13)

are 𝐿𝑝-multipliers. We finally infer from this observation (along with the definition of Bessel potential spaces in (2.5)) that for
𝑡 ≥ 1 − 𝑠 and 𝑝 ∈ (1,∞),

𝑠
𝛿 ∶ 𝐻 𝑡,𝑝(R𝑛) → 𝐻 𝑡−(1−𝑠),𝑝(R𝑛), (2.14)

is an isomorphism with inverse (𝑠
𝛿 )

−1 = 𝑠𝛿 .
Moreover, since the decay of 𝑅𝑠𝛿 is uniform in 𝑠, a similar argument as in [14, Lemma 8] shows that the operator norm of 𝑠

𝛿 is
uniformly bounded in 𝑠 ∈ (0, 1); in particular, using (2.6) and 𝐻0,𝑝 = 𝐿𝑝, there is a 𝐶 > 0 independent of 𝑠 such that

‖𝑠𝑣‖ ≤ ‖𝑠𝑣‖ ≤ 𝐶‖𝑣‖ for all 𝑣 ∈ 𝑊 1,𝑝(R𝑛) and 𝑠 ∈ (0, 1). (2.15)
7

𝛿 𝐿𝑝(R𝑛) 𝛿 𝐻𝑠,𝑝(R𝑛) 𝑊 1,𝑝(R𝑛)
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2.4. Pseudo-differential operators and Dirichlet problems

The recent existence and uniqueness theory from [32] together with the regularity results in [1] for boundary-value problems
nvolving pseudo-differential operators play an important role for our work. We collect here the statements that we will need, while
eeping the presentation accessible, and refer to e.g., [32, Section 2.2] for precise definitions and properties of pseudo-differential
perators.

For a suitable pseudo-differential operator  , an open subset 𝑉 ⊂ R𝑛, and a function 𝑔 ∶ 𝑉 → R, the associated Dirichlet problem
reads

{

𝑤 = 𝑔 on 𝑉
𝑤 = 0 in 𝑉 𝑐 .

(2.16)

By combining the results of [1,32], we obtain into the following statement tailored to our needs.

Theorem 2.6 (Existence and Uniqueness for Pseudo-Differential Dirichlet Problems). Let 𝑝 ∈ (1,∞), 𝑎 ∈ (0, 1∕2), 𝑉 ⊂ R𝑛 be an open and
bounded set with 𝐶1,1-boundary, and let  be a strongly elliptic, even, classical pseudo-differential operator of order 2𝑎 satisfying

⟨𝜑,𝜑⟩𝐿2(R𝑛) ≥ 𝐶‖𝜑‖2𝐻𝑎(R𝑛) for all 𝜑 ∈ 𝐶∞
𝑐 (R𝑛) (2.17)

with some constant 𝐶 > 0. Then, there exists for every 𝑔 ∈ 𝐿𝑝(𝑉 ) a unique 𝑤𝑔 ∈ 𝐻𝑎,𝑝
0 (𝑉 ) with

𝑤𝑔 = 𝑔 in 𝑉 .

If 𝑝 ∈ (1, 1𝑎 ), it even holds that 𝑤𝑔 ∈ 𝐻2𝑎,𝑝
0 (𝑉 ) and there is a 𝑐 > 0 such that

‖𝑤𝑔‖𝐻2𝑎,𝑝(R𝑛) ≤ 𝑐‖𝑔‖𝐿𝑝(𝑉 ) for all 𝑔 ∈ 𝐿𝑝(𝑉 ).

Proof. We define the operator 𝑉 with domain

dom(𝑉 ) ∶= {𝑤 ∈ 𝐻𝑎,𝑝
0 (𝑉 ) ∶ (𝑤)|𝑉 ∈ 𝐿𝑝(𝑉 )}

via restriction of  to 𝑉 , i.e., 𝑉𝑤 = (𝑤)|𝑉 for 𝑤 ∈ dom(𝑉 ). Due to (2.17), we may apply [32, Theorem 4.2] with 𝛽 = 0, and
then also [32, Theorem 4.16 2◦], to deduce that 𝑉 ∶ dom(𝑉 ) → 𝐿𝑝(𝑉 ) is a bijection. This shows the first part of the statement.

For the case 𝑝 ∈ (1, 1𝑎 ), we note that in [1] (see also [32, Theorem 3.2]), the domain dom(𝑉 ) has been characterized as the so-
called 𝑎-transmission space, which agrees with 𝐻2𝑎,𝑝

0 (𝑉 ) when 𝑝 ∈ (1, 1𝑎 ) (cf. [32, Eq. (2.20)]). Consequently, 𝑉 ∶ 𝐻2𝑎,𝑝
0 (𝑉 ) → 𝐿𝑝(𝑉 )

s a bijective bounded linear operator. In particular, it is invertible with bounded inverse, which implies the full statement. □

emark 2.7. (a) We note that connectedness is not part of the definition of a domain in [1,32], in contrast to our definition, and
ence, Theorem 2.6 is valid for non-connected sets 𝑉 as well. Moreover, the regularity of the domain 𝑉 in Theorem 2.6 can even
e reduced to 𝑉 ⊂ R𝑛 that have 𝐶1,𝜏 -boundaries with 𝜏 ∈ (2𝑎, 1), see [1,32]. Only for simplicity of the presentation, we work here
ith a stronger assumption.

(b) Note that the range of 𝑝 such that 𝑤𝑔 lies in 𝐻2𝑎,𝑝
0 (𝑉 ) is sharp, which is due to the fact that the solutions to the pseudo-

ifferential problem in (2.16) contain a factor of dist(⋅, 𝜕𝑉 )𝑎 near the boundary. To give a precise example, we can take any smooth,
bounded domain 𝑉 and any function 𝑤 ∶ R𝑛 → R that is smooth in 𝑉 , equal to dist(⋅, 𝜕𝑉 )𝑎 near the boundary 𝜕𝑉 and zero in 𝑉 𝑐 .
t follows then by [31, Theorem 4] that (𝑤)|𝑉 ∈ 𝐶∞(R𝑛)|𝑉 , which implies, in particular, that 𝑤 ∈ 𝐻𝑎,𝑝

0 (𝑉 ) is a solution to (2.16)
ith a smooth right-hand side. However, we have that 𝑤 dist(⋅, 𝜕𝑉 )−2𝑎 is equal to dist(⋅, 𝜕𝑉 )−𝑎 near the boundary of 𝑉 , which is not

n 𝐿𝑝(𝑉 ) for 𝑝 ≥ 1
𝑎 , so that 𝑤 ∉ 𝐻2𝑎,𝑝

0 (𝑉 ) in view of the Hardy-type inequality [52, Proposition 5.7]. ▵

The translation operator 𝑠
𝛿 from the previous section is in fact a pseudo-differential operator that fits exactly into the abstract

framework of Theorem 2.6, which is the content of the following lemma. This observation will be crucial for our characterization
result of 𝑁𝑠,𝑝,𝛿(𝛺) (cf. Theorem 3.8 and Lemma 3.6).

Lemma 2.8 (𝑠
𝛿 as Pseudo-Differential Operator). The operator 

𝑠
𝛿 defined in (2.9) is a strongly elliptic, even classical pseudo-differential

operator of order 1 − 𝑠 and there is a 𝐶 > 0 such that

⟨𝑠
𝛿𝜑,𝜑⟩𝐿2(R𝑛) ≥ 𝐶‖𝜑‖2

𝐻
1−𝑠
2 (R𝑛)

for all 𝜑 ∈ 𝐶∞
𝑐 (R𝑛).

Proof. The properties can be deduced from the fact that the symbol of 𝑠
𝛿 is smooth, radial and positive, and for large frequencies

only differs from the symbol of the fractional Laplacian (−𝛥)
1−𝑠
2 up to a Schwartz function (see (2.12)). For the reader’s convenience,

we work out the details below, referring to [32, Section 2.2] for the precise definitions of the properties of pseudo-differential
operators.

It is easy to check in light of (2.12) that for any 𝛼 ∈ N𝑛0,
|𝜕𝛼

(

1∕𝑄̂𝑠
)

| ≤ 𝐶 ⟨⋅⟩1−𝑠−|𝛼|,
8

|

|

𝛿 |

|

𝛼
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which means that 𝑠
𝛿 has order 1 − 𝑠. Defining 𝑝0 ∶ R𝑛 → R to be a smooth function with 𝑝0(𝜉) = |2𝜋𝜉|1−𝑠 for |𝜉| ≥ 1, we obtain

gain from (2.12) that
|

|

|

𝜕𝛼
(

1∕𝑄̂𝑠𝛿 − 𝑝0
)

|

|

|

≤ 𝐶𝛼⟨⋅⟩
1−𝑠−|𝛼|−𝐽 ,

for any 𝐽 ∈ N0. This means that 𝑠
𝛿 is classical (where in the expansion 𝑝𝑗 = 0 for 𝑗 ≥ 1) and, since 𝑝0(−𝜉) = 𝑝0(𝜉) for |𝜉| ≥ 1, 𝑠

𝛿
is even. Finally, because 𝑝0(𝜉) ≥ 𝐶 |𝜉|1−𝑠 for |𝜉| ≥ 1, the operator 𝑠

𝛿 is strongly elliptic, and since 1∕𝑄̂𝑠𝛿 ≥ 𝐶⟨⋅⟩1−𝑠, we have by the
lancherel identity that

⟨𝑠
𝛿𝜑,𝜑⟩𝐿2(R𝑛) = ⟨𝜑̂∕𝑄̂𝑠𝛿 , 𝜑̂⟩𝐿2(R𝑛) ≥ 𝐶‖⟨⋅⟩

1−𝑠
2 𝜑̂‖𝐿2(R𝑛) = 𝐶‖𝜑‖

𝐻
1−𝑠
2 (R𝑛)

or all 𝜑 ∈ 𝐶∞
𝑐 (R𝑛), which finishes the proof. □

. Discussion and characterization of functions with zero nonlocal gradient

This section revolves around the study of the functions in the nonlocal Sobolev space with vanishing finite-horizon fractional
radient. Our analysis examines different facets of the set

𝑁𝑠,𝑝,𝛿(𝛺) = {ℎ ∈ 𝐻𝑠,𝑝,𝛿(𝛺) ∶ 𝐷𝑠
𝛿ℎ = 0 a.e. in 𝛺},

ncluding the existence and construction of non-trivial functions, characterization results, a discussion of regularity properties, and
llustrative examples. Throughout Sections 3–6, 𝛺 is assumed to be a bounded Lipschitz domain, unless mentioned otherwise.

.1. Non-constant elements of 𝑁𝑠,𝑝,𝛿(𝛺)

In contrast to the functions with zero classical gradient, the set 𝑁𝑠,𝑝,𝛿(𝛺) encompasses strictly more than constant functions. In
fact, one can find functions in 𝑁𝑠,𝑝,𝛿(𝛺) that are non-constant on any subset of 𝛺, which is the content of the following proposition.

Proposition 3.1 (Existence of Non-Constant Functions in 𝑁𝑠,𝑝,𝛿(𝛺)). Let 𝑝 ∈ [1,∞]. It holds for any open, non-empty 𝑈 ⊂ 𝛺 that

𝑁𝑠,𝑝,𝛿(𝛺) ⊄ {𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) ∶ 𝑢 is constant a.e. on 𝑈}.

Proof. Suppose to the contrary that every 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) is constant a.e. on 𝑈 . The reasoning that will lead to the desired contradiction
is organized in three steps.

Step 1: Representation of 𝑉 𝑠
𝛿 away from the origin. We deduce from the above assumption that the kernel 𝑉 𝑠

𝛿 in (2.11) then has to
satisfy

𝑉 𝑠
𝛿 (𝑥) =

1
𝜎𝑛−1

𝑥
|𝑥|𝑛

for all 𝑥 ∈ 𝐵𝜌(0)
𝑐
, (3.1)

here 𝜌 = Diam(𝛺) is the diameter of 𝛺 and 𝜎𝑛−1 denotes the surface area of the unit sphere in R𝑛.1 To see this, we split the
rgument in three sub-steps, showing first that div𝑉 𝑠

𝛿 is constant outside of 𝐵𝜌(0). Next, we exploit the radiality of 𝑉 𝑠
𝛿 (cf. (H1)) and

its boundedness away from the origin, which yields a representation of 𝑉 𝑠
𝛿 on 𝐵𝜌(0)

𝑐
up to constants. The latter are then determined

xplicitly in the final step.
Step 1a. For every 𝜑 ∈ 𝐶∞

𝑐 (𝛺
𝑐
), we infer from (2.10) that 𝐷𝑠

𝛿(
𝑠
𝛿𝜑) = ∇𝜑 = 0 in 𝛺, and hence, 𝑠

𝛿𝜑 ∈ 𝑁𝑠,𝑝,𝛿(𝛺). By our initial
assumption, 𝑠

𝛿𝜑 is then constant on 𝑈 , which, in view of the identity 𝑠
𝛿𝜑 = 𝑉 𝑠

𝛿 ∗ ∇𝜑 in (2.11), is equivalent to

∫R𝑛
(

𝑉 𝑠
𝛿 (𝑥 − 𝑧) − 𝑉

𝑠
𝛿 (𝑦 − 𝑧)

)

⋅ ∇𝜑(𝑧) 𝑑𝑧 = 0 for all 𝑥, 𝑦 ∈ 𝑈.

Since this holds for any 𝜑 ∈ 𝐶∞
𝑐 (𝛺

𝑐
), the fundamental lemma of the calculus of variations in combination with integration by parts

llows us to deduce

div𝑉 𝑠
𝛿 (𝑥 − 𝑧) = div𝑉 𝑠

𝛿 (𝑦 − 𝑧) for all 𝑥, 𝑦 ∈ 𝑈 and all 𝑧 ∈ 𝛺
𝑐
. (3.2)

Let us fix 𝑥 ∈ 𝑈 and consider 𝑤 ∈ R𝑛 with |𝑤| > 𝜌 = Diam(𝛺). It follows then that 𝑥−𝑤 ∈ 𝛺
𝑐
, and we obtain with 𝑧 = 𝑥−𝑤 ∈ 𝛺

𝑐

that

div𝑉 𝑠
𝛿 (𝑤) = div𝑉 𝑠

𝛿 (𝑤 + 𝑦 − 𝑥)

or all 𝑦 ∈ 𝑈 . Taking 𝑦 ∈ 𝐵𝜖(𝑥) ⊂ 𝑈 , with 𝜖 > 0 sufficiently small, yields

div𝑉 𝑠
𝛿 (𝑤) = div𝑉 𝑠

𝛿 (𝑤
′) for all 𝑤′ ∈ 𝐵𝜖(𝑤).

1 Note that the function 𝑥↦ 1
𝜎𝑛−1

𝑥
|𝑥|𝑛

for 𝑥 ∈ R𝑛 corresponds exactly to the kernel function appearing in the fundamental theorem of calculus for the classical
gradient, see [44, Proposition 4.14].
9



Nonlinear Analysis 249 (2024) 113642C. Kreisbeck and H. Schönberger

w

s

s
D

A
t

‖

f
t

H
t

For 𝑛 > 1, this shows that the divergence of 𝑉 𝑠
𝛿 is locally constant on the connected set 𝐵𝜌(0)

𝑐
, and thus, constant outside of 𝐵𝜌(0);

the case 𝑛 = 1 yields the same conclusion by also utilizing the vector-radiality of 𝑉 𝑠
𝛿 .

Step 1b. Recall that 𝑉 𝑠
𝛿 is smooth on R𝑛 ⧵ {0} and vector-radial, meaning that there is a smooth function 𝑓 𝑠𝛿 ∶ (0,∞) → R with

𝑉 𝑠
𝛿 (𝑥) = 𝑥𝑓 𝑠𝛿 (|𝑥|). We can then rewrite the divergence of 𝑉 𝑠

𝛿 as

div𝑉 𝑠
𝛿 (𝑥) = 𝑛𝑓 𝑠𝛿 (|𝑥|) + |𝑥| (𝑓 𝑠𝛿 )

′(|𝑥|)

for 𝑥 ∈ R𝑛 ⧵ {0}. Since this expression is constant on the complement of 𝐵𝜌(0) by Step 1, the auxiliary function 𝑓 𝑠𝛿 satisfies for all
𝑟 > 𝜌 the equation

𝑛𝑓 𝑠𝛿 (𝑟) + 𝑟(𝑓
𝑠
𝛿 )

′(𝑟) = 𝑐 (3.3)

ith some constant 𝑐 ∈ R. The family of solutions to the ordinary differential equation (3.3) is given by 𝑟 ↦ 𝑐
𝑛 + 𝑘

𝑟𝑛 with 𝑘 ∈ R.
Consequently, there is a 𝑘 ∈ R such that

𝑉 𝑠
𝛿 (𝑥) = 𝑐 𝑥

𝑛
+ 𝑘 𝑥

|𝑥|𝑛
for all 𝑥 ∈ 𝐵𝜌(0)

𝑐
.

Step 1c. The boundedness of 𝑉 𝑠
𝛿 on 𝐵𝜌(0)

𝑐
according to [6, Theorem 5.9 𝑏] implies 𝑐 = 0. To determine 𝑘, consider the compactly

upported, integrable function

𝑥 ↦ 𝑉 𝑠
𝛿 (𝑥) − 𝑘

𝑥
|𝑥|𝑛

,

whose Fourier transform is continuous and can be calculated to be

𝜉 ↦
−𝑖𝜉

2𝜋|𝜉|2
( 1
𝑄̂𝑠𝛿(𝜉)

− 𝑘𝜎𝑛−1
)

, (3.4)

ee [6, Theorem 5.9]. As the first factor in (3.4) has a pole at the origin, the second factor needs to vanish in 0 because of continuity.
ue to 𝑄𝑠𝛿(0) = ‖𝑄𝑠𝛿‖𝐿1(R𝑛) = 1, this eventually yields 𝑘 = 𝜎−1𝑛−1, confirming (3.1).
Step 2: Entire extension of 𝑄̂𝑠𝛿 is zero-free. Let us introduce the auxiliary function 𝑍𝑠

𝛿 ∈ 𝐶∞(R𝑛 ⧵ {0};R𝑛) ∩ 𝐿1(R𝑛;R𝑛) defined by

𝑍𝑠
𝛿 (𝑥) = 𝑉 𝑠

𝛿 (𝑥) −
1

𝜎𝑛−1
𝑥

|𝑥|𝑛
.

s 𝑍𝑠
𝛿 has compact support owing to Step 1, the Paley-Wiener theorem (see e.g., [29, Theorem 2.3.21]) implies that the Fourier

ransform 𝑍𝑠
𝛿 with

𝑍𝑠
𝛿 (𝜉) =

−𝑖𝜉
2𝜋|𝜉|2

( 1
𝑄̂𝑠𝛿(𝜉)

− 1
)

for 𝜉 ∈ R𝑛 ⧵ {0}. (3.5)

is real analytic and allows for a unique entire extension to a function C𝑛 → C𝑛. An analogous argument gives that the Fourier
transform of the kernel function 𝑄𝑠𝛿 (see (2.7) and recall supp(𝑄𝑠𝛿) ⊂ 𝐵𝛿(0)) is extendable (uniquely) to a holomorphic function
C𝑛 → C. In the following, we write 𝑍𝑠

𝛿 and 𝑄̂𝑠𝛿 for both the Fourier transforms of 𝑍𝑠
𝛿 and 𝑄𝑠𝛿 , as well as for their extended versions

defined on C𝑛.
The goal in this step is to show that

𝑄̂𝑠𝛿 ∶ C𝑛 → C is zero-free. (3.6)

Suppose for the sake of contradiction that this is not the case, and let 𝜁0 ∈ C𝑛 ⧵ {0} be a zero of 𝑄̂𝑠𝛿 with minimal norm 𝑟 ∶= |

|

𝜁0||;
note that 𝑄̂𝑠𝛿(0) = ‖𝑄𝑠𝛿‖𝐿1(R𝑛) = 1. Applying the identity theorem of complex analysis, in each variable separately, to 𝑍𝑠

𝛿 as in (3.5)
yields that

𝑍𝑠
𝛿 (𝜁 ) =

−𝑖𝜁
2𝜋|𝜁 |2

( 1
𝑄̂𝑠𝛿(𝜁 )

− 1
)

for 𝜁 ∈ C𝑛 ⧵ {0} with |𝜁 | < 𝑟.

We now find that lim𝑟′↑1 |𝑍𝑠
𝛿 (𝑟

′𝜁0)| = ∞, which contradicts the continuity of the holomorphic extension of 𝑍𝑠
𝛿 . Thus, (3.6) is proven.

Step 3: Section of 𝑄̂𝑠𝛿 coincides with exponential of a polynomial. Consider 𝑞𝑠𝛿 ∶ C → C, 𝑧↦ 𝑄𝑠𝛿(𝑧𝑒1) with 𝑒1 = (1, 0,… , 0) ∈ C𝑛. From
𝑄𝑠𝛿‖𝐿1(R𝑛) = 1 and supp(𝑄𝑠𝛿) ⊂ 𝐵𝛿(0), we conclude that

|

|

|

𝑞𝑠𝛿(𝑧)
|

|

|

= |

|

|

𝑄̂𝑠𝛿(𝑧𝑒1)
|

|

|

≤ ∫R𝑛
|

|

|

𝑄𝑠𝛿(𝑥)
|

|

|

|

|

|

𝑒−2𝜋𝑖𝑥1𝑧||
|

𝑑𝑥 ≤ 𝑒2𝜋𝛿|𝑧|

or all 𝑧 ∈ C, showing that 𝑞𝑠𝛿 is an entire function of order at most 1. As a consequence of Step 2, this function is never zero, so
hat the Hadamard factorization theorem (see e.g., [37, Corollary XII.3.3]) yields that

𝑞𝑠𝛿(𝑧) = 𝑒𝑎𝑧+𝑏 for all 𝑧 ∈ C with 𝑎, 𝑏 ∈ C.

owever, this contradicts the fact that 𝑞𝑠𝛿 ∶ 𝑧 ↦ 𝑄̂𝑠𝛿(𝑧𝑒1) is non-constant and even (cf. Section 2.3), as the section of the Fourier
𝑠

10

ransform of the radial kernel 𝑄𝛿 , which proves the statement. □
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We point out that the previous result is not true when 𝛺 = R𝑛. In fact, 𝑁𝑠,𝑝,𝛿(R𝑛) for 𝑝 <∞ contains only the zero function, which
an be deduced with the help of the translation operators of Section 2.3 as follows: Let 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(R𝑛), then 𝑣 ∶= 𝑠𝛿𝑢 ∈ 𝑊 1,𝑝(R𝑛)
atisfies ∇𝑣 = 𝐷𝑠

𝛿𝑢 = 0, and hence, 𝑣 = 0, so that 𝑢 = 𝑠
𝛿 (

𝑠
𝛿𝑢) = 𝑠

𝛿𝑣 = 0. A similar argument for 𝑝 = ∞, shows that 𝑁𝑠,∞,𝛿(R𝑛) only
onsists of constant functions. Nevertheless, there are unbounded sets 𝛺 ⊂ R𝑛 for which 𝑁𝑠,𝑝,𝛿(𝛺) is non-trivial.

emark 3.2 (Generalization to Unbounded Sets). Proposition 3.1 holds more generally for open sets 𝛺 ⊂ R𝑛 such that 𝛺
𝑐

contains
the trace of an unbounded continuous curve 𝛾 ∶ [0,∞) → R𝑛.

The proof can easily be adjusted, with only a minor modification in Step 1a. After showing (3.2) as above, let us fix 𝑥 ∈ 𝑈 and
onsider 𝑤 = 𝑥 − 𝑧 ∈ R𝑛 for some 𝑧 ∈ 𝛾([0,∞)). It follows then from (3.2) that div𝑉 𝑠

𝛿 (𝑤) = div𝑉 𝑠
𝛿 (𝑤

′) for all 𝑤′ ∈ 𝐵𝜖(𝑤) with 𝜖 > 0
uch that 𝐵𝜖(𝑥) ⊂ 𝑈 . By applying this for all 𝑧 ∈ 𝛾([0,∞)) and exploiting the radial symmetry of the divergence of 𝑉 𝑠

𝛿 , we find that
iv𝑉 𝑠

𝛿 is constant in the complement of 𝐵𝜌(0) with 𝜌 ∶= dist(𝑥, 𝛾([0,∞))). ▵

The following result confirms that there exist, in fact, a great many functions with vanishing nonlocal gradients, by showing that
hey form an infinite-dimensional space.

roposition 3.3 (𝑁𝑠,𝑝,𝛿(𝛺) is Infinite-Dimensional). Let 𝑝 ∈ [1,∞], then 𝑁𝑠,𝑝,𝛿(𝛺) is an infinite-dimensional closed subspace of 𝐻𝑠,𝑝,𝛿(𝛺).

Proof. The proof idea relies on a semi-explicit construction procedure in three steps: Starting with 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺), there is a
∈ 𝑊 1,𝑝(𝛺) with ∇𝑣 = 𝐷𝑠

𝛿𝑢 on 𝛺 by Lemma 2.4. Next, we extend 𝑣 in an arbitrary way to a compactly supported function in
𝑊 1,𝑝(R𝑛). In view of Lemma 2.5, it holds that 𝑠𝛿𝑢 ∶= 𝑠

𝛿𝑣 ∈ 𝐻𝑠,𝑝,𝛿(R𝑛) satisfies 𝐷𝑠
𝛿(

𝑠
𝛿𝑢) = 𝐷𝑠

𝛿𝑢 on 𝛺, or equivalently,

ℎ = (𝑠𝛿𝑢)|𝛺𝛿 − 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺). (3.7)

ote that 𝑠𝛿𝑢 can be viewed as an extension operator of 𝑢 modulo a function with vanishing nonlocal gradient, see Section 4.2 for
ore details.

Let 𝑚 ∈ N. With the aim of constructing 𝑚 linearly independent functions in 𝑁𝑠,𝑝,𝛿(𝛺), we take 𝑢1,… , 𝑢𝑚 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) with 𝑚 ∈ N
uch that no (non-trivial) linear combination of them can be extended to a function in 𝐻𝑠,𝑝,𝛿(R𝑛) = 𝐻𝑠,𝑝(R𝑛). This can be achieved,
or instance, if each function 𝑢𝑗 has a suitable singularity in different places in the collar 𝛤𝛿 .

To give more details, choose 𝑥1,… , 𝑥𝑚 as distinct points in 𝛤𝛿 and let 𝜖 > 0 be such that the balls 𝐵2𝜖(𝑥𝑗 ) are pairwise disjoint
nd compactly contained in 𝛤𝛿 . Further, define

𝑢𝑗 (𝑥) = 1𝐵𝜖 (𝑥𝑗 )(𝑥)𝑢
(𝑥 − 𝑥𝑗

𝜖

)

for 𝑥 ∈ 𝛺𝛿 and 𝑗 = 1,… , 𝑚,

here 𝑢 ∈ 𝐿𝑝(R𝑛) ⧵𝐻𝑠,𝑝,𝛿(R𝑛) with supp(𝑢) compactly contained in 𝐵1(0) (cf. Example 3.4). Note that any function in 𝐿𝑝(𝛺𝛿) that is
zero in a compact set containing 𝛺 lies in 𝐻𝑠,𝑝,𝛿(𝛺). Indeed, the nonlocal gradient is then given by a convolution and defines an
𝐿𝑝-function due to Young’s convolution inequality, see Remark 2.1 (b); the integration by parts formula in (2.4) can be verified via
Fubini’s theorem. We conclude that 𝑢𝑗 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) for all 𝑗. On the other hand, by construction no 𝑢𝑗 has an extension to 𝐻𝑠,𝑝,𝛿(R𝑛),
and thus, nor does any linear combination of 𝑢1,… , 𝑢𝑚.

According to (3.7), we now set ℎ𝑗 = (𝑠𝛿𝑢𝑗 )|𝛺𝛿 −𝑢𝑗 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) for 𝑗 = 1,… , 𝑚. If these functions ℎ𝑗 were linearly dependent, then
one could find a non-trivial linear combination of 𝑢1,… , 𝑢𝑚 that can be extended to R𝑛 via the operator 𝑠𝛿 , which contradicts
the assumption. Hence, ℎ1,… , ℎ𝑚 are linearly independent. Because 𝑚 ∈ N is arbitrary, this shows that 𝑁𝑠,𝑝,𝛿(𝛺) must be
infinite-dimensional. □

For the reader’s convenience, we give here explicit examples of functions 𝑢 ∈ 𝐿𝑝(R𝑛) ⧵𝐻𝑠,𝑝,𝛿(R𝑛) for all 1 ≤ 𝑝 ≤ ∞ with compact
support in 𝐵1(0), as they were used in the previous proof.

xample 3.4. Let 𝑝 ∈ [1,∞). Defining for some 0 < 𝜈 < min{ 𝑛𝑝 , 𝑠},

𝑢 = 1𝐵1(0) | ⋅ |
− 𝑛𝑝+𝜈 ∈ 𝐿𝑝(R𝑛),

gives a function with the desired properties if 𝜈 is sufficiently small. That 𝑢 ∉ 𝐻𝑠,𝑝,𝛿(R𝑛), follows by contradiction with the estimate
n [6, Proposition 7.2], once we have shown the existence of a constant 𝑐 > 0 such that

‖𝑢 − 𝑢(⋅ + ℎ)‖𝐿𝑝(𝐵1(0)) ≥ 𝑐 |ℎ|𝜈 for all ℎ ∈ 𝐵1(0). (3.8)

ndeed, we have that

‖𝑢 − 𝑢(⋅ + ℎ)‖𝐿𝑝(𝐵1(0)) ≥ ‖𝑢‖𝐿𝑝(𝐵
|ℎ|∕2(0)) − ‖𝑢( ⋅ + ℎ)‖𝐿𝑝(𝐵

|ℎ|∕2(0))

≥

(

∫𝐵
|ℎ|∕2(0)

|𝑥|−𝑛+𝜈𝑝 𝑑𝑥

)1∕𝑝

−
(

|

|

|

𝐵
|ℎ|∕2(0)

|

|

|

(|ℎ|∕2)−𝑛+𝜈𝑝
)1∕𝑝

≥
(

𝑐1
(𝜈𝑝)1∕𝑝

− 𝑐2

)

|ℎ|𝜈 ,
11

with 𝑐1, 𝑐2 > 0, so that (3.8) follows for small 𝜈.
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For larger 𝑝 there are also more elementary examples, such as the indicator function of a ball when 1 < 𝑠𝑝 < ∞, or any
discontinuous function when 𝑛 < 𝑠𝑝 < ∞ (see e.g., [4, Section 2.1]). For the case 𝑝 = ∞, we can take 𝑢 to be any discontinuous
function with support in 𝐵1(0). Indeed, if it were true that 𝑢 ∈ 𝐻𝑠,∞,𝛿(R𝑛), then we also find that 𝑢 ∈ 𝐻𝑠,𝑞,𝛿(R𝑛) for all 𝑞 ∈ [1,∞) given
ts compact support. This would yield by [6, Theorem 6.3], that 𝑢 is Hölder continuous up to order 𝑠, which gives a contradiction.

.2. Characterization of 𝑁𝑠,𝑝,𝛿(𝛺)

Now that the presence of non-constant functions with zero nonlocal gradient is confirmed, the next task is to understand – and
ventually, characterize – all functions in 𝑁𝑠,𝑝,𝛿(𝛺).

We start by observing that a function 𝑢 ∈ 𝐿𝑝(𝛺𝛿) lies in 𝑁𝑠,𝑝,𝛿(𝛺) if and only if 𝑠𝛿𝑢 = 𝑄𝑠𝛿 ∗ 𝑢 is constant (in 𝛺). Indeed, if 𝑄𝑠𝛿 ∗ 𝑢
is constant, then

∫𝛺𝛿
𝑢 div𝑠𝛿 𝜑𝑑𝑥 = ∫R𝑛

𝑢𝑄𝑠𝛿 ∗ div𝜑𝑑𝑥 = ∫𝛺
(𝑄𝑠𝛿 ∗ 𝑢) div𝜑𝑑𝑥 = 0 for all 𝜑 ∈ 𝐶∞

𝑐 (𝛺;R𝑛),

hich shows that 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) with 𝐷𝑠
𝛿𝑢 = 0. Conversely, if 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺), it follows from Lemma 2.4 that 𝑠𝛿𝑢 ∈ 𝑊 1,𝑝(𝛺) has zero

radient, and is thus, constant. The desired characterization of 𝑁𝑠,𝑝,𝛿(𝛺) therefore comes down to identifying all solutions ℎ ∈ 𝐿𝑝(𝛺𝛿)
or convolution equations of the form

𝑄𝑠𝛿 ∗ ℎ = 𝑐 a.e. in 𝛺

or any 𝑐 ∈ R.
Our strategy for characterizing 𝑁𝑠,𝑝,𝛿(𝛺) starts at a suitable boundary-value problem involving the convolution operator 𝑠𝛿 . Via

nversion of 𝑠𝛿 (based on the translation tools from Section 2.3), we then rewrite the latter equivalently as a pseudo-differential
quation featuring 𝑠

𝛿 subject to Dirichlet boundary conditions, for which a solution theory can be achieved. Let us make the
entioned equivalence precise.

emma 3.5 (Equivalence Between (C) and (P)). Let 𝑝 ∈ (1,∞), 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿). Further, let 𝛺′ ⊂ R𝑛 be any smooth and bounded
et with 𝛺2𝛿 ⊂ 𝛺′ and 𝛤 ′ ∶= 𝛺′ ⧵𝛺. Then,

(C)
{

𝑠𝛿ℎ = 𝑐 a.e. in 𝛺,
ℎ = 𝑔 a.e. in 𝛤𝛿 ,

has a solution ℎ ∈ 𝐿𝑝(𝛺𝛿) if and only if there exists a 𝑤 ∈ 𝐻1−𝑠,𝑝(R𝑛) solving

(P)
⎧

⎪

⎨

⎪

⎩

𝑠
𝛿𝑤 = 1𝛤𝛿 𝑔 a.e. in 𝛤 ′,

𝑤 = 𝑐 a.e. in 𝛺,
𝑤 = 0 a.e. in (𝛺′)𝑐 .

Specifically, the following holds:

(i) If ℎ ∈ 𝐿𝑝(𝛺𝛿) is a solution to (C), then 𝑤 ∶= 𝑠𝛿(1𝛺𝛿ℎ) ∈ 𝐻1−𝑠,𝑝(R𝑛) solves (P).
(ii) If 𝑤 ∈ 𝐻1−𝑠,𝑝(R𝑛) satisfies (P), then ℎ ∶= (𝑠

𝛿𝑤)|𝛺𝛿 ∈ 𝐿𝑝(𝛺𝛿) is a solution to (C).

Proof. The main ingredient of this proof is (2.14) with 𝑡 = 1− 𝑠, according to which 𝑠
𝛿 is a isomorphism from 𝐻1−𝑠,𝑝(R𝑛) to 𝐿𝑝(R𝑛)

with inverse 𝑠𝛿 .
The implication (𝑖) follows then immediately from the observation that

𝑠
𝛿𝑤 = 𝑠

𝛿
𝑠
𝛿(1𝛺𝛿ℎ) = 1𝛺𝛿ℎ = 1𝛤𝛿 𝑔 a.e. in 𝛺𝑐 ,

along with the property that supp(𝑄𝑠𝛿) ⊂ 𝐵𝛿(0), which implies supp(𝑤) ⊂ 𝛺𝛿 + 𝐵𝛿(0) ⊂ 𝛺2𝛿 ⊂ 𝛺′ as well as 𝑤 = 𝑠𝛿ℎ = 𝑐 a.e. in 𝛺
given |𝜕𝛺| = 0.

On the other hand, (𝑖𝑖) holds since 𝑠𝛿ℎ = 𝑠𝛿(
𝑠
𝛿𝑤) = 𝑤 = 𝑐 a.e. in 𝛺 and ℎ = 𝑠

𝛿𝑤 = 𝑔 a.e. in 𝛤𝛿 , again using that |𝜕𝛺| = 0. □

Based on the previous lemma, we can express 𝑁𝑠,𝑝,𝛿(𝛺) in terms of the solution sets of the boundary-value problems (C) and (P).
To be precise, let

C𝑠,𝑝,𝛿(𝛺) ∶=
⋃

𝑐∈R,𝑔∈𝐿𝑝(𝛤𝛿 )
C𝑠,𝑝,𝛿(𝑐, 𝑔) and P𝑠,𝑝,𝛿(𝛺) ∶=

⋃

𝑐∈R,𝑔∈𝐿𝑝(𝛤𝛿 )
P𝑠,𝑝,𝛿(𝑐, 𝑔), (3.9)

where C𝑠,𝑝,𝛿(𝑐, 𝑔) for 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿) denotes the set of all solutions in 𝐿𝑝(𝛺𝛿) to (C), and P𝑠,𝑝,𝛿(𝑐, 𝑔) comprises the functions
in 𝐻1−𝑠,𝑝(R𝑛) solving (P). Then,

𝑁𝑠,𝑝,𝛿(𝛺) = C𝑠,𝑝,𝛿(𝛺) = 𝑠
𝛿
(

P𝑠,𝑝,𝛿(𝛺)
)

|𝛺𝛿 . (3.10)

We take (3.10) as motivation to turn our attention to (P) and address the question of its solvability. It turns out that the recent
existence and uniqueness results by Grubb [32] in combination with the regularity theory in [1] by Abels & Grubb for general
12
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pseudo-differential operators (see Theorem 2.6 for a version tailored to our setting) provides an answer. Even though the next
lemma is a direct application of this abstract framework, we have included for illustration also a hands-on alternative proof in the
case 𝑝 = 2.

Lemma 3.6 (Existence and Uniqueness for (P)). Let 𝑝 ∈ (1,∞) and 𝛺 be a bounded 𝐶1,1-domain. Then, for every 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿),
he problem (P) admits a unique solution 𝑤𝑐,𝑔 ∈ 𝐻

1−𝑠
2 ,𝑝(R𝑛). If 𝑝 ∈ (1, 2

1−𝑠 ), then 𝑤𝑐,𝑔 ∈ 𝐻1−𝑠,𝑝(R𝑛).

Proof. We may assume without loss of generality that 𝑐 = 0, since for every 𝑤 ∈ P𝑠,𝑝,𝛿(0, 𝑔−𝑐) it holds that 𝑤+𝑠𝛿(1𝛺𝛿 𝑐) ∈ P𝑠,𝑝,𝛿(𝑐, 𝑔).
Hence, we can focus our attention to the pseudo-differential equation

{

𝑠
𝛿𝑤 = 1𝛤𝛿 𝑔 a.e. in 𝛤 ′,

𝑤 = 0 a.e. in (𝛤 ′)𝑐 .
(3.11)

The statement now follows immediately by applying Theorem 2.6 for the pseudo-differential operator  = 𝑠
𝛿 and the set 𝑉 = 𝛤 ′.

Indeed, 𝑠
𝛿 satisfies all the required assumptions according to Lemma 2.8 and 𝛤 ′ = 𝛺′ ⧵𝛺 is a bounded open set with 𝐶1,1-boundary,

given that 𝜕𝛤 ′ = 𝜕𝛺′ ∪ 𝜕𝛺.
Our alternative proof for 𝑝 = 2 relies on a familiar variational argument and exploits regularity results for the fractional Laplacian.

Let us consider the operator

𝑠𝛿 ∶ (R𝑛) → (R𝑛), ̂𝑠𝛿𝜑 =
𝜑̂

√

𝑄𝑠𝛿

,

which can be extended to a bounded linear operator 𝐻 𝑡(R𝑛) → 𝐻 𝑡− 1−𝑠
2 (R𝑛) for any 𝑡 ∈ R. Then, (𝑠𝛿)

2 = 𝑠𝛿◦
𝑠
𝛿 = 𝑠

𝛿 , and we observe
that ‖𝑠𝛿 ⋅‖𝐿2(R𝑛) is a norm on 𝐻

1−𝑠
2 (R𝑛) that is equivalent to ‖⋅‖

𝐻
1−𝑠
2 (R𝑛)

in view of (2.13).
As a consequence of the generalized Dirichlet principle, the functional

𝑤 ↦ ‖𝑠𝛿𝑤‖
2
𝐿2(R𝑛) − ∫R𝑛

1𝛤𝛿 𝑔 𝑤𝑑𝑥

ver all functions 𝑤 ∈ 𝐻
1−𝑠
2

0 (𝛤 ′) has a unique minimizer 𝑤∗, which is also the unique solution to

∫R𝑛
𝑠𝛿𝑤 𝑠𝛿𝜑 − 1𝛤𝛿 𝑔𝜑 𝑑𝑥 = 0 for all 𝜑 ∈ 𝐶∞

𝑐 (𝛤 ′). (3.12)

Since (3.12) is a weak formulation of (3.11) for 𝑝 = 2, the function 𝑤∗ ∈ 𝐻
1−𝑠
2

0 (𝛤 ′) is indeed the only candidate for the sought
solution.

It remains to prove that 𝑤∗ ∈ 𝐻1−𝑠(R𝑛). To this end, we compare the operator 𝑠𝛿 with the fractional Laplacian (−𝛥)
1−𝑠
4 ∶

1−𝑠
2 (R𝑛) → 𝐿2(R𝑛), showing that they differ by a bounded linear operator on 𝐿2(R𝑛). Indeed, 𝑠

𝛿 ∶= 𝑠𝛿 − (−𝛥)
1−𝑠
4 is an 𝐿2-Fourier

multiplier operator with multiplier

𝑚𝑠𝛿(𝜉) =
1

√

𝑄̂𝑠𝛿(𝜉)
− |2𝜋𝜉|

1−𝑠
2 for 𝜉 ∈ R𝑛.

he boundedness of 𝑚𝑠𝛿 follows from the smoothness and positivity of 𝑄̂𝑠𝛿 together with the observation that for |𝜉| > 1,

𝑚𝑠𝛿(𝜉) =

(

1
√

1 + |2𝜋𝜉|1−𝑠 𝑅𝑠𝛿(𝜉)
− 1

)

|2𝜋𝜉|
1−𝑠
2 ,

which is bounded since 𝑅𝑠𝛿 (cf. (2.12)) is a Schwartz function. A particular consequence is that 𝑠
𝛿(−𝛥)

1−𝑠
4 = (−𝛥)

1−𝑠
4 𝑠

𝛿 ∶ 𝐻
1−𝑠
2 (R𝑛) →

𝐿2(R𝑛) is a bounded linear operator.
Then, (3.12) turns into

∫R𝑛
(−𝛥)

1−𝑠
4 𝑤 (−𝛥)

1−𝑠
4 𝜑 +

(

2𝑠
𝛿(−𝛥)

1−𝑠
4 𝑤 + (𝑠

𝛿)
2𝑤 − 1𝛤𝛿 𝑔

)

𝜑𝑑𝑥 = 0 for all 𝜑 ∈ 𝐶∞
𝑐 (𝛤 ′),

hich implies that 𝑤∗ weakly satisfies
{

(−𝛥)
1−𝑠
2 𝑤 = 2𝑠

𝛿(−𝛥)
1−𝑠
4 𝑤 + (𝑠

𝛿)
2𝑤 − 1𝛤𝛿 𝑔 in 𝛤 ′,

𝑤 = 0 in (𝛤 ′)𝑐 .

Since the right-hand side of the fractional differential equation lies in 𝐿2(𝛤 ′) and the boundary 𝜕𝛤 ′ = 𝜕𝛺′ ∪ 𝜕𝛺 is 𝐶1,1, we obtain
from established regularity results for the fractional Laplacian (see, e.g., [31,38,53] for smooth domains and [1, Theorem 1.1] for

1,1 1−𝑠 𝑛
13

𝐶 -domains) that 𝑤 ∈ 𝐻 (R ), as desired. □
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Remark 3.7. The range of 𝑝 for which 𝑤𝑔 ∈ 𝐻1−𝑠,𝑝(R𝑛) is sharp, since even for smooth 𝛺, one can find 𝑔 ∈ 𝐿𝑝(𝛤𝛿) such that
𝑤𝑔 ∉ 𝐻1−𝑠,𝑝(R𝑛) when 𝑝 ∈ [ 2

1−𝑠 ,∞). To see this, let us take 𝑤 equal to dist(⋅, 𝜕𝛤 ′)
1−𝑠
2 near the boundary of 𝛤 ′ with 𝑠

𝛿𝑤|𝛤 ′ ∈ 𝐶∞(R𝑛)|𝛤 ′

s in Remark 2.7 (b). Then, we define

𝑤̃ ∶= 𝑠𝛿(1𝛺𝛿
𝑠
𝛿𝑤),

hich coincides with 𝑤 in a neighborhood of 𝛺, given (H2). Therefore, 𝑤̃ equals dist(⋅, 𝜕𝛺)
1−𝑠
2 near the boundary of 𝛺, which yields

𝑤̃ ∉ 𝐻1−𝑠,𝑝(R𝑛). However, since 𝑤̃ = 𝑤 = 0 in 𝛺 and supp(𝑤̃) ⊂ 𝛺2𝛿 , we deduce that
{

𝑠
𝛿 𝑤̃ = 1𝛤𝛿

𝑠
𝛿𝑤 a.e. in 𝛤 ′,

𝑤̃ = 0 a.e. in (𝛤 ′)𝑐 .

With 𝑔 ∶= 𝑠
𝛿𝑤|𝛤𝛿 ∈ 𝐿𝑝(𝛤𝛿), the claim follows. ▵

Lemma 3.6 in combination with Lemma 3.5 provide useful information about the solution sets for the boundary-value problems
(P) and (C). Since the statement of Lemma 3.6 is qualitatively different depending on whether 𝑝 is smaller or larger than the critical
value 2

1−𝑠 , we discuss these two cases separately.
Suppose first that 𝑝 ∈ (1, 2

1−𝑠 ). Then, for any 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿), the sets P𝑠,𝑝,𝛿(𝑐, 𝑔) and C𝑠,𝑝,𝛿(𝑐, 𝑔) are singletons and can be
epresented as

P𝑠,𝑝,𝛿(𝑐, 𝑔) = {𝑤𝑐,𝑔} and C𝑠,𝑝,𝛿(𝑐, 𝑔) = {ℎ𝑐,𝑔}, (3.13)

here 𝑤𝑐,𝑔 ∈ 𝐻1−𝑠,𝑝(R𝑛) and ℎ𝑐,𝑔 ∶= (𝑠
𝛿𝑤𝑐,𝑔)|𝛺𝛿 ∈ 𝐿𝑝(𝛺𝛿) are the unique solutions to (P) and (C), respectively.

Summarizing these findings, we are now in the position to state the main result of this section concerning the characterization
f 𝑁𝑠,𝑝,𝛿(𝛺).

heorem 3.8 (Characterization of 𝑁𝑠,𝑝,𝛿(𝛺) for 𝑝 ∈ (1, 2
1−𝑠 )). Let 𝑝 ∈ (1, 2

1−𝑠 ) and let 𝛺 be a bounded 𝐶1,1-domain. Then,

𝑁𝑠,𝑝,𝛿(𝛺) =
⋃

𝑐∈R,𝑔∈𝐿𝑝(𝛤𝛿 )
C𝑠,𝑝,𝛿(𝑐, 𝑔) =

⋃

𝑐∈R,𝑔∈𝐿𝑝(𝛤𝛿 )
{ℎ𝑐,𝑔}, (3.14)

here ℎ𝑐,𝑔 for 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿) is the unique solution of (C).

Proof. This follows immediately from (3.9), (3.10) and (3.13). □

As a consequence of Theorem 3.8, we obtain that the bounded linear map

𝛷𝑠
𝛿 ∶ 𝑁

𝑠,𝑝,𝛿(𝛺) → R × 𝐿𝑝(𝛤𝛿), ℎ↦
(

∫𝛺
𝑄𝑠𝛿 ∗ ℎ 𝑑𝑥, ℎ|𝛤𝛿

)

(3.15)

is bijective. The inverse (𝛷𝑠
𝛿)

−1 ∶ (𝑐, 𝑔) ↦ ℎ𝑐,𝑔 for (𝑐, 𝑔) ∈ R × 𝐿𝑝(𝛤𝛿) is then bounded as well by the Banach isomorphism theorem,
i.e., there is a constant 𝐶 > 0 such that

‖ℎ𝑐,𝑔‖𝐿𝑝(𝛺𝛿 ) ≤ 𝐶
(

‖𝑔‖𝐿𝑝(𝛤𝛿 ) + |𝑐|
)

for all 𝑔 ∈ 𝐿𝑝(𝛤𝛿) and 𝑐 ∈ R.

The discussion above implies that the functions with zero nonlocal gradient are uniquely determined by their values in the single
collar 𝛤𝛿 and an averaging condition involving the kernel function 𝑄𝑠𝛿 . Besides, one can also observe a one-to-one correspondence
between functions in 𝑁𝑠,𝑝,𝛿(𝛺) and these two basic characteristics: the boundary values in 𝛤𝛿 and the mean value in 𝛺. Indeed,
another isomorphism between 𝑁𝑠,𝑝,𝛿(𝛺) and R × 𝐿𝑝(𝛤𝛿) is given by

𝛹 𝑠𝛿 ∶ 𝑁𝑠,𝑝,𝛿(𝛺) → R × 𝐿𝑝(𝛤𝛿), ℎ↦
(

∫𝛺
ℎ 𝑑𝑥, ℎ|𝛤𝛿

)

, (3.16)

which follows essentially from the next proposition.

Proposition 3.9 (Uniqueness in 𝑁𝑠,𝑝,𝛿(𝛺) with Vanishing Mean Value). Let 𝑝 ∈ (1,∞) and 𝛺 be a bounded 𝐶1,1-domain. If ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺)
satisfies

ℎ = 0 a.e. in 𝛤𝛿 and ∫𝛺
ℎ 𝑑𝑥 = 0,

then ℎ = 0.

Proof. If ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺) with ℎ = 0 a.e. in 𝛤𝛿 , then (3.14) implies the existence of a 𝑐 ∈ R such that ℎ = ℎ𝑐,0 ∈ 𝐿𝑝(𝛺𝛿). If 𝑝 ≥ 2
1−𝑠 > 2,

it is clear that ℎ ∈ 𝐿2(𝛺𝛿). Otherwise, this property follows from

ℎ𝑐,0 ∈ C𝑠,𝑝,𝛿(𝑐, 0) = C𝑠,2,𝛿(𝑐, 0) ⊂ 𝐿2(𝛺𝛿),

see (3.17) below. We exploit ∫𝛺 ℎ 𝑑𝑥 = 0 and supp(𝑄𝑠𝛿) ⊂ 𝐵𝛿(0) to find

‖1̂𝛺𝛿ℎ‖𝐿2(R𝑛) = ‖ℎ‖𝐿2(𝛺) =
‖

‖

‖

ℎ −𝑄𝑠𝛿 ∗ ℎ − |𝛺|

−1 ℎ −𝑄𝑠𝛿 ∗ ℎ 𝑑𝑥
‖

‖

‖

14

‖

∫𝛺 ‖𝐿2(𝛺)
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≤ ‖ℎ −𝑄𝑠𝛿 ∗ ℎ‖𝐿2(𝛺) ≤ ‖1𝛺𝛿ℎ −𝑄𝑠𝛿 ∗ (1𝛺𝛿ℎ)‖𝐿2(R𝑛) ≤ ‖(1 − 𝑄̂𝑠𝛿)1̂𝛺𝛿ℎ‖𝐿2(R𝑛).

Since 0 ≤ 1 − 𝑄̂𝑠𝛿 < 1 (see (2.8) and Remark 2.3 (b)), we deduce that 1̂𝛺𝛿ℎ = 0, and hence, ℎ = 0, as stated. □

emark 3.10 (Uniqueness in 𝑁𝑠,𝑝,𝛿(𝛺) with Enlarged Single Layer). The mean value condition in the previous proposition can be
emoved in exchange for replacing the Dirichlet condition in the single layer 𝛤𝛿 by a Dirichlet condition in 𝛺𝛿 ⧵ 𝑂 for any 𝑂 ⋐ 𝛺.

This means, if ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺) satisfies ℎ = 0 a.e. in 𝛺𝛿 ⧵ 𝑂, then ℎ = 0.
Indeed, let 𝑂′ ⊂ 𝛺 be smooth with 𝑂 ⋐ 𝑂′ ⋐ 𝛺 and take 𝜂 ∈ 𝐿1(R𝑛) with ‖𝜂‖𝐿1(R𝑛) = 1 and supp(𝜂) ⊂ 𝐵𝜖(0) for 𝜖 > 0 sufficiently

mall. Since there is a 𝑐 ∈ R such that 𝑄𝑠𝛿 ∗ ℎ = 𝑐 a.e. in 𝛺 with ℎ = 0 a.e. in 𝛺𝛿 ⧵ 𝑂, we find that the convolution ℎ𝜂 ∶= 𝜂 ∗ ℎ
atisfies

𝑄𝑠𝛿 ∗ ℎ𝜂 = 𝑐 a.e. in 𝑂′ with ℎ𝜂 = 0 a.e. in 𝑂′
𝛿 ⧵ 𝑂′.

By the uniqueness statements in Theorem 3.8 and Proposition 3.12 (applied to the set 𝑂′), it follows that ℎ = ℎ𝜂 for all such 𝜂,
which is only possible for ℎ = 0. ▵

Remark 3.11 (Equivalent Norms on 𝑁𝑠,𝑝,𝛿(𝛺)). Based on the isomorphisms 𝛹 𝑠𝛿 and 𝛷𝑠
𝛿 we conclude that defining

|||ℎ|||𝑁𝑠,𝑝,𝛿 (𝛺) ∶= ‖ℎ‖𝐿𝑝(𝛤𝛿 ) +
|

|

|∫𝛺
𝑄𝑠𝛿 ∗ ℎ 𝑑𝑥

|

|

|

and

|||ℎ|||𝑁𝑠,𝑝,𝛿 (𝛺) ∶= ‖ℎ‖𝐿𝑝(𝛤𝛿 ) +
|

|

|∫𝛺
ℎ 𝑑𝑥||

|

for ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺) yields two norms on 𝑁𝑠,𝑝,𝛿(𝛺) that are equivalent to ‖⋅‖𝐿𝑝(𝛺𝛿 ) when 𝑝 ∈ (1, 2
1−𝑠 ). ▵

Finally, we study the case 𝑝 ∈ [ 2
1−𝑠 ,∞). Before stating the corresponding representation result for 𝑁𝑠,𝑝,𝛿(𝛺), we collect a few

further observations about the solutions to (C) and (P). Suppose in the following that 𝑐 ∈ R and 𝑔 ∈ 𝐿𝑝(𝛤𝛿). By Lemma 3.6, the
olution set P𝑠,𝑝,𝛿(𝑐, 𝑔) has at most cardinality 1; specifically,

P𝑠,𝑝,𝛿(𝑐, 𝑔) = {𝑤𝑐,𝑔} ∩𝐻1−𝑠,𝑝(R𝑛).

ince 𝐿𝑝(𝛺𝛿) ⊂ 𝐿𝑞(𝛺𝛿) for all 1 < 𝑞 ≤ 𝑝, Lemma 3.6 implies also that 𝑤𝑐,𝑔 ∈ 𝐻1−𝑠,𝑞(R𝑛) for all 𝑞 ∈ (1, 2
1−𝑠 ). In particular, this shows

that the solution sets of (P) are independent of the integrability parameters, in the sense that

P𝑠,𝑞,𝛿(𝑐, 𝑔) = P𝑠,2,𝛿(𝑐, 𝑔) for all 𝑞 ∈ (1, 2
1−𝑠 ),

so that we can conclude

P𝑠,𝑝,𝛿(𝑐, 𝑔) = P𝑠,2,𝛿(𝑐, 𝑔) ∩𝐻1−𝑠,𝑝(R𝑛).

Considering the one-to-one relation between the solutions of (C) and (P) (see Lemma 3.5), the above properties of P𝑠,𝑝,𝛿(𝑐, 𝑔)
carry over to C𝑠,𝑝,𝛿(𝑐, 𝑔). Hence,

C𝑠,𝑞,𝛿(𝑐, 𝑔) = C𝑠,2,𝛿(𝑐, 𝑔) for all 𝑞 ∈ (1, 2
1−𝑠 ), (3.17)

and along with (2.14),

C𝑠,𝑝,𝛿(𝑐, 𝑔) = C𝑠,2,𝛿(𝑐, 𝑔) ∩ 𝐿𝑝(𝛺𝛿). (3.18)

The latter gives rise to the next result.

Proposition 3.12 (Characterization of 𝑁𝑠,𝑝,𝛿(𝛺) for 𝑝 ∈ [ 2
1−𝑠 ,∞)). Let 𝑝 ∈ [ 2

1−𝑠 ,∞) and let 𝛺 be a bounded 𝐶1,1-domain. Then,

𝑁𝑠,𝑝,𝛿(𝛺) = 𝑁𝑠,2,𝛿(𝛺) ∩ 𝐿𝑝(𝛺𝛿),

where 𝑁𝑠,2,𝛿(𝛺) can be characterized as in Theorem 3.8.

Proof. The combination of (3.9), (3.10), and (3.18) proves the claim. □

Remark 3.13. The maps 𝛷𝑠
𝛿 and 𝛹 𝑠𝛿 from (3.15) and (3.16) can be defined analogously when 𝑝 ∈ [ 2

1−𝑠 ,∞). While Proposition 3.12
shows that they are still injective, surjectivity generally fails in view of Remark 3.7. This shows that not all boundary values in
𝑝 𝑠,𝑝,𝛿 2 ). ▵
15

𝐿 (𝛤𝛿) can be attained by functions in 𝑁 (𝛺), in contrast to the case 𝑝 ∈ (1, 1−𝑠
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3.3. Regularity properties of functions with zero nonlocal gradient and examples

In this section, we dive deeper into some of the properties of functions with zero nonlocal gradient, such as their regularity, and
e will show some numerical examples to illustrate how they generally behave.

We start off by showing that all functions in 𝑁𝑠,𝑝,𝛿(𝛺) are smooth inside 𝛺.

Corollary 3.14 (Functions with Vanishing Nonlocal Gradient are Smooth in 𝛺). Let 𝑝 ∈ (1,∞), then every ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺) satisfies

ℎ|𝛺 ∈ 𝐶∞(𝛺).

Proof. It suffices to prove the statement for ℎ ∈ C𝑠,𝑝,𝛿(0, 𝑔) with 𝑔 ∈ 𝐿𝑝(𝛤𝛿), given (3.9) and the fact that C𝑠,𝑝,𝛿(𝑐, 𝑔) = C𝑠,𝑝,𝛿(0, 𝑔−𝑐)+𝑐
for all 𝑐 ∈ R. If ℎ ∈ C𝑠,𝑝,𝛿(0, 𝑔), we deduce from Lemma 3.5 that

ℎ = (𝑠
𝛿𝑤)|𝛺𝛿 for a 𝑤 ∈ P𝑠,𝑝,𝛿(0, 𝑔) ⊂ 𝐻1−𝑠,𝑝

0 (𝛤 ′).

To see that the restriction (𝑠
𝛿𝑤)|𝛺 is smooth, we argue as follows. For any 𝜖 > 0 sufficiently small and 𝜓 ∈ 𝐶∞(R𝑛) with 𝜓 = div𝑉 𝑠

𝛿
on 𝐵𝜖(0)𝑐 , it holds that

𝑠
𝛿𝑤 = div𝑉 𝑠

𝛿 ∗ 𝑤 = 𝜓 ∗ 𝑤 on R𝑛 ⧵ (supp(𝑤))𝜖 ;

this follows from (2.11) via integration by parts, along with an approximation argument. Consequently, 𝑠
𝛿𝑤 can be expressed as

the convolution of a compactly supported 𝐿𝑝-function with a smooth function on R𝑛 ⧵ (𝛺𝑐 )𝜖 for any 𝜖, and is thus smooth on the
union of all these sets, which is 𝛺. □

In general, we do not expect that functions in 𝑁𝑠,𝑝,𝛿(𝛺) will be regular on the larger domain 𝛺𝛿 given Remark 3.7, see also Figs. 2
and 3 below. However, there do exist smooth non-constant functions in 𝑁𝑠,𝑝,𝛿(𝛺) (cf. Proposition 3.1) and they are exactly those
that can be obtained from the translation mechanism.

Proposition 3.15 (Functions in 𝑁𝑠,𝑝,𝛿(𝛺) with Extra Regularity). Let 𝑝 ∈ [1,∞], then it holds that

𝑁𝑠,𝑝,𝛿(𝛺) ∩𝐻𝑠,𝑝,𝛿(R𝑛)|𝛺𝛿 = {𝑠
𝛿𝑣|𝛺𝛿 ∶ 𝑣 ∈ 𝑊 1,𝑝(R𝑛) with ∇𝑣 = 0 a.e. on 𝛺},

and

𝑁𝑠,𝑝,𝛿(𝛺) ∩ 𝐶∞
𝑐 (R𝑛)|𝛺𝛿 = {𝑠

𝛿𝑣|𝛺𝛿 ∶ 𝑣 ∈ 𝐶∞
𝑐 (R𝑛) with ∇𝑣 = 0 on 𝛺}.

Proof. Let 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) ∩ 𝐻𝑠,𝑝,𝛿(R𝑛)|𝛺𝛿 and consider an extension 𝑢̃ ∈ 𝐻𝑠,𝑝,𝛿(R𝑛) of 𝑢. Then, we find by Lemma 2.4 that
𝑣 ∶= 𝑠𝛿 𝑢̃ ∈ 𝑊 1,𝑝(R𝑛) with ∇𝑣 = 𝐷𝑠

𝛿𝑢 = 0 a.e. on 𝛺. Moreover, by Lemma 2.5 we find that

𝑠
𝛿𝑣|𝛺𝛿 = 𝑢̃|𝛺𝛿 = 𝑢,

as desired. On the other hand, if 𝑢 = 𝑠
𝛿𝑣|𝛺𝛿 for 𝑣 ∈ 𝑊 1,𝑝(R𝑛) with ∇𝑣 = 0 a.e. on 𝛺, then 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(R𝑛)|𝛺𝛿 and 𝐷𝑠

𝛿𝑢 = ∇𝑠𝛿𝑢 = ∇𝑣 = 0
a.e. on 𝛺. This proves the first identification.

For the smooth case we can argue in the same way, by also using that 𝑠𝛿 and 𝑠
𝛿 map smooth functions to smooth functions

(cf. (2.11)). Note that 𝑠
𝛿 might not preserve the compact support, but this is not an issue since 𝐶∞

𝑐 (R𝑛)|𝛺𝛿 = 𝐶∞(R𝑛)|𝛺𝛿 . □

We close this section with an illustration of selected one-dimensional examples of functions with zero nonlocal gradient. Fig. 2
depicts a numerical approximation of the unique function ℎ𝑐,𝑔 ∈ C𝑠,2,𝛿(𝑐, 𝑔) with 𝑐 = 0 and 𝑔 ≡ −1 on 𝛤𝛿 . While ℎ𝑐,𝑔 ∈ 𝐿𝑞(𝛺𝛿) for
all 𝑞 ∈ (1, 2

1−𝑠 ) according to (3.17), we see in the first plot that this function has a jump singularity at the boundary of the domain
𝛺 = (−3, 3). This indicates that ℎ𝑐,𝑔 might not lie in 𝐿𝑝(𝛺𝛿) for all 𝑝 ∈ (1,∞), reflecting the observations from Remarks 3.7 and 3.13.
Moreover, while one may expect from the first illustration that the function is constant on a sub-interval of (−3, 3), the enlarged
plots show that this is not the case. Indeed, ℎ𝑐,𝑔 seems to be displaying oscillations with decreasing amplitude, which is in line with
the fact that functions in 𝑁𝑠,𝑝,𝛿(𝛺) need not be constant on any subset of 𝛺 (cf. Proposition 3.1). It is an interesting topic for further
study to understand these oscillatory patterns better, and to see if all non-constant functions in 𝑁𝑠,𝑝,𝛿(𝛺) have a similar behavior.

In Fig. 3, there are two further examples of functions with zero nonlocal gradient. The left-hand example is similar to the one
from Fig. 2, but with different boundary values. It still features jump singularities at the boundary, and is nearly constant away from
the boundary. The right-hand example in Fig. 3 shows a function with zero nonlocal gradient constructed via the characterization
in Proposition 3.15. In contrast to the other examples, this one does not have a jump singularity at the boundary. By construction,
it is smooth and an element of 𝑁𝑠,𝑝,𝛿(𝛺) for all 𝑝 ∈ [1,∞].

4. Technical tools involving functions with zero nonlocal gradient

In this section, we present several results regarding the function spaces 𝐻𝑠,𝑝,𝛿(∞) in which the set 𝑁𝑠,𝑝,𝛿(𝛺) plays an important
ole. We start off with a bounded-domain analogue of the isomorphism between 𝐻𝑠,𝑝,𝛿(R𝑛) and 𝑊 1,𝑝(R𝑛) from [14, Section 2.4]
hat turns nonlocal gradients into gradients. Subsequently, we study extensions of functions in 𝐻𝑠,𝑝,𝛿(𝛺) to the whole space R𝑛 and
16

rove new nonlocal Poincaré and Poincaré-Wirtinger inequalities and compactness results.
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𝑣
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Fig. 2. Numerical approximation of the function ℎ𝑐,𝑔 ∈ 𝑁𝑠,2,𝛿 (𝛺) for 𝑐 = 0 and 𝑔 ≡ −1 on 𝛤𝛿 with increasing degrees of zoom. The parameters for the computation
re 𝑛 = 1, 𝛺 = (−3, 3), 𝑠 = 1

2
, 𝛿 = 1 and 𝑤𝛿 ∈ 𝐶∞

𝑐 (−1, 1) is a bump function equal to 1 on (− 1
2
, 1
2
).

Fig. 3. Left: A numerical approximation of the function ℎ𝑐,𝑔 ∈ 𝑁𝑠,2,𝛿 (𝛺) with 𝑐 = 0 and 𝑔(𝑥) = 𝑥 for 𝑥 ∈ 𝛤𝛿 . Right: A plot of 𝑠
𝛿𝑣|𝛺𝛿

∈
⋂

𝑝∈[1,∞]𝑁
𝑠,𝑝,𝛿 (𝛺) with

(𝑥) = 1 + 5𝜑(𝑥 + 4) − 2𝜑(𝑥 − 4) for a non-negative bump function 𝜑 ∈ 𝐶∞
𝑐 (−1, 1). The parameters are the same as in Fig. 2.

.1. Connection between classical and nonlocal Sobolev spaces

As we know from Section 2.3, the translation operators 𝑠𝛿 and its inverse 𝑠
𝛿 provide a isomorphism between the spaces 𝐻𝑠,𝑝,𝛿(R𝑛)

nd 𝑊 1,𝑝(R𝑛) with the properties ∇◦𝑠𝛿 = 𝐷𝑠
𝛿 and 𝐷𝑠

𝛿◦
𝑠
𝛿 = ∇. On a bounded open set 𝛺 ⊂ R𝑛, it still holds for 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) that

𝑠𝛿𝑢 lies in 𝑊 1,𝑝(𝛺) with ∇(𝑠𝛿𝑢) = 𝐷𝑠
𝛿𝑢 (cf. Lemma 2.4), but 𝑠

𝛿 is not defined on 𝑊 1,𝑝(𝛺), which prevents an identification with
𝐻𝑠,𝑝,𝛿(𝛺) in analogy to the setting on the whole space R𝑛.

It turns out that one can resolve this issue and find a perfect translation mechanism also between the classical and nonlocal
Sobolev spaces on bounded sets, by considering the spaces modulo the functions with zero (nonlocal) gradient. In this spirit, our
next theorem gives a natural generalization of Lemma 2.4 and 2.5, cf. also [14, Section 2.4].

To state the result precisely, let us introduce the quotient spaces

𝐻̃𝑠,𝑝,𝛿(𝛺) ∶= 𝐻𝑠,𝑝,𝛿(𝛺)∕𝑁𝑠,𝑝,𝛿(𝛺) and 𝑊 1,𝑝(𝛺) ∶= 𝑊 1,𝑝(𝛺)∕(𝛺),
17
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where (𝛺) ∶= {𝑣 ∈ 𝐿𝑝(𝛺) ∶ 𝑣 is constant}; for the equivalence classes in 𝐻̃𝑠,𝑝,𝛿(𝛺), we write [𝑢]𝑠𝛿 = 𝑢+𝑁𝑠,𝑝,𝛿(𝛺) with a representative
n 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺), and analogously, [𝑣] = 𝑣+ (𝛺) with 𝑣 ∈ 𝑊 1,𝑝(𝛺) for elements in 𝑊 1,𝑝(𝛺). We endow these spaces with the norms

given by
‖

‖

‖

[𝑢]𝑠𝛿
‖

‖

‖𝐻̃𝑠,𝑝,𝛿 (𝛺)
∶= ‖𝐷𝑠

𝛿𝑢‖𝐿𝑝(𝛺;R𝑛) and ‖

‖

‖

[𝑣]‖‖
‖𝑊 1,𝑝(𝛺)

∶= ‖∇𝑣‖𝐿𝑝(𝛺;R𝑛), (4.1)

oting that 𝐷𝑠
𝛿𝑢 and ∇𝑣 are both independent of the chosen representative of [𝑢]𝑠𝛿 and [𝑣], respectively. Moreover, let 𝐷̃𝑠

𝛿[𝑢]
𝑠
𝛿 ∶= 𝐷𝑠

𝛿𝑢
nd ∇̃[𝑣] ∶= ∇𝑣 for 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) and 𝑣 ∈ 𝑊 1,𝑝(𝛺), respectively, where the choice of representative is irrelevant.

heorem 4.1 (Isomorphism Between 𝐻̃𝑠,𝑝,𝛿(𝛺) and 𝑊 1,𝑝(𝛺)). Let 𝑝 ∈ [1,∞]. Then, the linear map

̃𝑠𝛿 ∶ 𝐻̃
𝑠,𝑝,𝛿(𝛺) → 𝑊 1,𝑝(𝛺), [𝑢]𝑠𝛿 ↦ [𝑠𝛿𝑢]

efines a isometric isomorphism, and it holds with ̃𝑠
𝛿 ∶= (̃𝑠𝛿)

−1 that

∇̃◦̃𝑠𝛿 = 𝐷̃𝑠
𝛿 and 𝐷̃𝑠

𝛿◦̃
𝑠
𝛿 = ∇̃. (4.2)

roof. Note first that ̃𝑠𝛿 is well-defined since 𝑠𝛿ℎ is constant for any ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺). The first identity in (4.2) follows immediately
rom ∇◦𝑠𝛿 = 𝐷𝑠

𝛿 , and we can compute that

‖̃𝑠𝛿[𝑢]
𝑠
𝛿‖𝑊 1,𝑝(𝛺) = ‖∇(𝑠𝛿𝑢)‖𝐿𝑝(𝛺;R𝑛) = ‖𝐷𝑠

𝛿𝑢‖𝐿𝑝(𝛺;R𝑛) = ‖[𝑢]𝑠𝛿‖𝐻̃𝑠,𝑝,𝛿 (𝛺)

or all 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺), which shows that ̃𝑠𝛿 is an isometry. To prove the bijectivity, we claim that the inverse of ̃𝑠𝛿 is given by

̃𝑠
𝛿 [𝑣] =

[

𝑠
𝛿 (𝑣)|𝛺𝛿

]𝑠
𝛿 for 𝑣 ∈ 𝑊 1,𝑝(𝛺),

here  ∶ 𝑊 1,𝑝(𝛺) → 𝑊 1,𝑝(R𝑛) is any bounded linear extension operator. Indeed, it holds that

𝐷𝑠
𝛿(̃

𝑠
𝛿 [𝑣]) = 𝐷𝑠

𝛿(
𝑠
𝛿 (𝑣)|𝛺𝛿 ) = ∇(𝑣)|𝛺 = ∇𝑣 for 𝑣 ∈ 𝑊 1,𝑝(𝛺),

rom which we infer the second part of (4.2), as well as ̃𝑠
𝛿◦̃

𝑠
𝛿 = Id and ̃𝑠𝛿◦̃

𝑠
𝛿 = Id. □

emark 4.2. The boundedness of ̃𝑠𝛿 and ̃𝑠
𝛿 holds as well, if 𝐻̃𝑠,𝑝,𝛿(𝛺) is equipped with the associated quotient norm, i.e.,

|

|

|

|

|

|

|

|

|

[𝑢]𝑠𝛿
|

|

|

|

|

|

|

|

|𝐻̃𝑠,𝑝,𝛿 (𝛺)
∶= inf

ℎ∈𝑁𝑠,𝑝,𝛿 (𝛺)
‖𝑢 − ℎ‖𝐿𝑝(𝛺𝛿 ) + ‖𝐷𝑠

𝛿𝑢‖𝐿𝑝(𝛺;R𝑛)

or 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺). Indeed, for ̃𝑠𝛿 this is clear, whereas for ̃𝑠
𝛿 we can compute for 𝑣 ∈ 𝑊 1,𝑝(𝛺) with ∫𝛺 𝑣 𝑑𝑥 = 0 that

|

|

|

|

|

|

|

|

|

̃𝑠
𝛿 [𝑣]

|

|

|

|

|

|

|

|

|𝐻̃𝑠,𝑝,𝛿 (𝛺)
≤ ‖𝑠

𝛿 (𝑣)‖𝐿𝑝(𝛺𝛿 ) + ‖∇𝑣‖𝐿𝑝(𝛺;R𝑛)

≤ 𝐶‖𝑣‖𝑊 1,𝑝(R𝑛) + ‖∇𝑣‖𝐿𝑝(𝛺;R𝑛)

≤ 𝐶‖𝑣‖𝑊 1,𝑝(𝛺) + ‖∇𝑣‖𝐿𝑝(𝛺;R𝑛) ≤ 𝐶‖[𝑣]‖𝑊 1,𝑝(𝛺),

here the second inequality uses Lemma 2.5, and the last the classical Poincaré-Wirtinger inequality. Moreover, for 𝑝 ∈ (1,∞),
he operator norm of ̃𝑠

𝛿 is independent of 𝑠 by (2.15). We use this observation later in Lemma 4.7 to deduce a new nonlocal
oincaré-Wirtinger equation.

In the classical Sobolev setting, the norm ‖⋅‖𝑊 1,𝑝(𝛺) in (4.1) is equivalent to the quotient norm on 𝑊 1,𝑝(𝛺) by the standard
oincaré-Wirtinger inequality. ▵

If the characterization of 𝑁𝑠,𝑝,𝛿(𝛺) in Theorem 3.8 holds, then any boundary values can be attained in the layer 𝛤𝛿 by elements
n an equivalence class of 𝐻̃𝑠,𝑝,𝛿(𝛺). In other words, for each 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) and each 𝑔 ∈ 𝐿𝑝(𝛤𝛿), there exists a representative of
𝑢]𝑠𝛿 = 𝑢 +𝑁𝑠,𝑝,𝛿(𝛺) that coincides with 𝑔 in 𝛤𝛿 . Based on this observation, we can state the following consequence of Theorem 4.1.

orollary 4.3. Let 𝑝 ∈ (1, 2
1−𝑠 ) and 𝛺 be a bounded 𝐶1,1-domain. Then, for every 𝑣 ∈ 𝑊 1,𝑝(𝛺) and 𝑔 ∈ 𝐿𝑝(𝛤𝛿), there is a 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺)

uch that
{

𝐷𝑠
𝛿𝑢 = ∇𝑣 a.e. in 𝛺,

𝑢 = 𝑔 a.e. in 𝛤𝛿 .

roof. Let 𝑣 ∈ 𝑊 1,𝑝(𝛺). Then, Theorem 4.1 implies that ∇𝑣 = ∇̃[𝑣] = 𝐷̃𝑠
𝛿[𝑢]

𝑠
𝛿 = 𝐷𝑠

𝛿𝑢 for some 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺). By Theorem 3.8, we
ay assume that 𝑢 coincides with 𝑔 in the boundary layer 𝛤𝛿 , which yields the desired function. □

.2. Extension modulo functions with zero nonlocal gradient.

While not every function in 𝐻𝑠,𝑝,𝛿(𝛺) is the restriction of a function in 𝐻𝑠,𝑝,𝛿(R𝑛) (cf. Proposition 3.3), we can show nevertheless
hat extensions to the whole space R𝑛 are possible up to function with zero nonlocal gradient. This technical tool has several
18



Nonlinear Analysis 249 (2024) 113642C. Kreisbeck and H. Schönberger

u

I

𝐻

4

P
c

T
s

f

P
S

w

w
w

𝑗

P


b

w
i

applications within this paper. It has appeared already in the proof of Proposition 3.3, where it provided an efficient way for
generating functions in 𝑁𝑠,𝑝,𝛿(𝛺).

With 𝑝 ∈ [1,∞], we define for a given bounded linear extension operator  ∶ 𝑊 1,𝑝(𝛺) → 𝑊 1,𝑝(R𝑛),

𝑠𝛿 ∶ 𝐻𝑠,𝑝,𝛿(𝛺) → 𝐻𝑠,𝑝,𝛿(R𝑛), 𝑠𝛿 ∶= 𝑠
𝛿◦◦

𝑠
𝛿 , (4.3)

with the translation operators 𝑠𝛿 and 𝑠
𝛿 from Section 2.3. As the composition of bounded linear operators, 𝑠𝛿 is bounded, even

niformly in 𝑠 when 𝑝 ∈ (1,∞), see (2.15). In view of (2.10), we infer for every 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) that 𝐷𝑠
𝛿

𝑠
𝛿𝑢 = 𝐷𝑠

𝛿𝑢 on 𝛺, and thus,

𝑢 − 𝑠𝛿𝑢|𝛺𝛿 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) for 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺).

n this sense, 𝑠𝛿 can be viewed as an extension operator on 𝐻𝑠,𝑝,𝛿(𝛺) modulo functions in 𝑁𝑠,𝑝,𝛿(𝛺).
Note further that 𝑠𝛿 , as a map from 𝐻𝑠,𝑝,𝛿(𝛺) to 𝐿𝑝(𝛺𝛿), is compact for 𝑝 ∈ (1,∞) due to the compact embedding of 𝐻𝑠,𝑝,𝛿(R𝑛) =

𝑠,𝑝(R𝑛) into 𝐿𝑝(𝛺𝛿), see Section 2.2. Thus, if (𝑢𝑗 )𝑗 is a weakly convergent sequence in 𝐻𝑠,𝑝,𝛿(𝛺) with limit 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺), then

𝑠𝛿𝑢𝑗 → 𝑠𝛿𝑢 in 𝐿𝑝(𝛺𝛿). (4.4)

.3. A new nonlocal Poincaré inequality

Another application of Theorem 3.8 is that we can derive a new Poincaré inequality for the nonlocal gradient. As opposed to the
oincaré inequality in [6, Theorem 6.1], which requires functions to be zero in the double collar 𝛤±𝛿 , the new one only imposes a
ondition in 𝛤𝛿 together with an average-value condition. Precisely, we will work with functions in the linear subspace

𝐻̊𝑠,𝑝,𝛿(𝛺) ∶=
{

𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) ∶ 𝑢 = 0 a.e. in 𝛤𝛿 , ∫𝛺
𝑢 𝑑𝑥 = 0

}

.

heorem 4.4 (Nonlocal Poincaré Inequality). Let 𝑝 ∈ (1, 2
1−𝑠 ) and 𝛺 ⊂ R𝑛 be a bounded 𝐶1,1-domain. Then, there exists a constant 𝐶 > 0

uch that

‖𝑢‖𝐿𝑝(𝛺𝛿 ) ≤ 𝐶‖𝐷𝑠
𝛿𝑢‖𝐿𝑝(𝛺;R𝑛)

or all 𝑢 ∈ 𝐻̊𝑠,𝑝,𝛿(𝛺).

roof. The proof stragegy follows a well-known contradiction argument, with Lemma 4.5 below as main technical ingredient.
uppose the statement is false, then there is a sequence (𝑢𝑗 )𝑗 ⊂ 𝐻̊𝑠,𝑝,𝛿(𝛺) with ‖𝑢𝑗‖𝐿𝑝(𝛺𝛿 ) > 𝑗‖𝐷

𝑠
𝛿𝑢𝑗‖𝐿𝑝(𝛺;R𝑛) for all 𝑗. By defining the

sequence (𝑢̃𝑗 )𝑗 ⊂ 𝐻̊𝑠,𝑝,𝛿(𝛺) via

𝑢̃𝑗 ∶=
𝑢𝑗

‖𝑢𝑗‖𝐿𝑝(𝛺𝛿 )
,

e obtain ‖𝑢̃𝑗‖𝐿𝑝(𝛺𝛿 ) = 1 and ‖𝐷𝑠
𝛿 𝑢̃𝑗‖𝐿𝑝(𝛺;R𝑛) ≤ 1∕𝑗 for each 𝑗. This allows us to conclude for a non-relabeled subsequence that

𝑢̃𝑗 ⇀ ℎ in 𝐻𝑠,𝑝,𝛿(𝛺) as 𝑗 → ∞,

ith a limit function ℎ ∈ 𝐻𝑠,𝑝,𝛿(𝛺) that satisfies 𝐷𝑠
𝛿ℎ = 0, or in other words, ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺). Due to the weak closedness of 𝐻̊𝑠,𝑝,𝛿(𝛺),

e also find that ℎ ∈ 𝐻̊𝑠,𝑝,𝛿(𝛺), which yields ℎ = 0 by Proposition 3.9.
Finally, we infer from Lemma 4.5 that 𝑢̃𝑗 → 0 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞, which contradicts ‖𝑢̃𝑗‖𝐿𝑝(𝛺𝛿 ) = 1 for all 𝑗 and thereby, proves

the result. □

The previous proof used the compact embedding of 𝐻̊𝑠,𝑝,𝛿(𝛺) into 𝐿𝑝(𝛺𝛿), which is the subject of the following lemma. We point
out that it builds substantially on the identification of 𝑁𝑠,𝑝,𝛿(𝛺) from Theorem 3.8.

Lemma 4.5. Let 𝑝 ∈ (1, 2
1−𝑠 ) and suppose 𝛺 ⊂ R𝑛 is a bounded 𝐶1,1-domain. If (𝑢𝑗 )𝑗 ⊂ 𝐻̊𝑠,𝑝,𝛿(𝛺) is such that 𝑢𝑗 ⇀ 𝑢 in 𝐻𝑠,𝑝,𝛿(𝛺) as

→ ∞ with some 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺), then 𝑢 ∈ 𝐻̊𝑠,𝑝,𝛿(𝛺) and

𝑢𝑗 → 𝑢 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞. (4.5)

roof. The fact that 𝑢 ∈ 𝐻̊𝑠,𝑝,𝛿(𝛺) is clear, since 𝐻̊𝑠,𝑝,𝛿(𝛺) is weakly closed in 𝐿𝑝(𝛺𝛿). As for (4.5), we use the extension operator
𝑠
𝛿 from Section 4.2 to obtain

𝑠𝛿𝑢𝑗 → 𝑠𝛿𝑢 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞

y (4.4). Therefore, with the sequence (ℎ𝑗 )𝑗 ⊂ 𝑁𝑠,𝑝,𝛿(𝛺) given by ℎ𝑗 ∶= 𝑢𝑗 − 𝑠𝛿𝑢𝑗 and ℎ ∶= 𝑢 − 𝑠𝛿𝑢 it holds that

ℎ𝑗 ⇀ ℎ in 𝐿𝑝(𝛺𝛿) and ℎ𝑗 → ℎ in 𝐿𝑝(𝛤𝛿) as 𝑗 → ∞, (4.6)

here the second convergence follows from 𝑢𝑗 = 0 = 𝑢 a.e. on 𝛤𝛿 . If we consider the norm on 𝑁𝑠,𝑝,𝛿(𝛺) from Remark 3.11, then (4.6)
mplies

|

|

|

|

|

|ℎ𝑗 − ℎ
|

|

|

|

|

| = ‖ℎ𝑗 − ℎ‖𝐿𝑝(𝛤 ) +
|

| 𝑄𝑠 ∗ (ℎ𝑗 − ℎ) 𝑑𝑥
|

| → 0 as 𝑗 → ∞.
19

||| |||𝑁𝑠,𝑝,𝛿 (𝛺) 𝛿 |

|

∫𝛺 𝛿 |

|
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Since |||⋅|||𝑁𝑠,𝑝,𝛿 (𝛺) is equivalent to the norm induced on 𝑁𝑠,𝑝,𝛿(𝛺) by ‖⋅‖𝐿𝑝(𝛺𝛿 ), we obtain ℎ𝑗 → ℎ in 𝐿𝑝(𝛺𝛿), and thus,

𝑢𝑗 = 𝑠𝛿𝑢𝑗 + ℎ𝑗 → 𝑠𝛿𝑢 + ℎ = 𝑢 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞,

which concludes the proof. □

Remark 4.6. The contradiction argument in Theorem 4.4 works more generally for any weakly closed subset 𝑋 ⊂ 𝐻𝑠,𝑝,𝛿(𝛺) that
is compactly contained in 𝐿𝑝(𝛺𝛿) and satisfies 𝑋 ∩ 𝑁𝑠,𝑝,𝛿(𝛺) = {0}. For example, one could replace the condition ∫𝛺 𝑢 𝑑𝑥 = 0 by
the condition ∫𝛺 𝑄

𝑠
𝛿 ∗ 𝑢 𝑑𝑥 = 0 or remove the mean-value condition completely and assume 𝑢 = 0 a.e. in 𝛺𝛿 ⧵ 𝑂 for any 𝑂 ⋐ 𝛺

(cf. Remark 3.10). ▵

4.4. Nonlocal Poincaré-Wirtinger inequality

Here, we derive an inequality involving the nonlocal gradient in the spirit of the classical Poincaré-Wirtinger inequality, by
subtracting suitable functions with zero nonlocal gradient. Moreover, we complement the inequality with a compactness result.
This will be used later in Section 6 to prove the well-posedness and localization as 𝑠 ↑ 1 of nonlocal variational problems with
Neumann-type boundary conditions.

Let 𝑝 ∈ (1,∞), and consider the metric projection 𝜋𝑠𝛿 ∶ 𝐿𝑝(𝛺𝛿) → 𝑁𝑠,𝑝,𝛿(𝛺), which minimizes the distance to the functions with
anishing nonlocal gradient in the 𝐿𝑝-norm, i.e., for 𝑢 ∈ 𝐿𝑝(𝛺𝛿),

‖𝑢 − 𝜋𝑠𝛿(𝑢)‖𝐿𝑝(𝛺𝛿 ) = min
ℎ∈𝑁𝑠,𝑝,𝛿 (𝛺)

‖𝑢 − ℎ‖𝐿𝑝(𝛺𝛿 );

ote that the minimum exists, considering that 𝑁𝑠,𝑝,𝛿(𝛺) is weakly closed in 𝐻𝑠,𝑝,𝛿(𝛺), and also in 𝐿𝑝(𝛺), since ‖⋅‖𝐻𝑠,𝑝,𝛿 (𝛺) = ‖⋅‖𝐿𝑝(𝛺)
n 𝑁𝑠,𝑝,𝛿(𝛺). In the case 𝑝 = 2, 𝜋𝑠𝛿 corresponds to the (linear) orthogonal projection onto 𝑁𝑠,𝑝,𝛿(𝛺). Even though 𝜋𝑠𝛿 need not be
inear when 𝑝 ≠ 2, one does have that 𝜋𝑠𝛿 is 1-homogeneous and that

𝜋𝑠𝛿(𝑢 + ℎ) = 𝜋𝑠𝛿(𝑢) + ℎ for all ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺). (4.7)

t is also well-known that 𝜋𝑠𝛿 is continuous, given that 𝐿𝑝(𝛺𝛿) is uniformly convex, see e.g., [28].
We now formulate and prove the Poincaré-Wirtinger inequality with the help of the metric projection.

emma 4.7 (Nonlocal Poincaré-Wirtinger Inequality). Let 𝑝 ∈ (1,∞). Then, there exists a constant 𝐶 = 𝐶(𝛺, 𝑝, 𝛿) > 0 such that

‖𝑢 − 𝜋𝑠𝛿(𝑢)‖𝐿𝑝(𝛺𝛿 ) ≤ 𝐶‖𝐷𝑠
𝛿𝑢‖𝐿𝑝(𝛺;R𝑛)

or all 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺).

roof. It follows from Theorem 4.1 (in the version where 𝐻̃𝑠,𝑝,𝛿(𝛺) is equipped with the quotient norm, see Remark 4.2) and
emma 2.4 that

‖𝑢 − 𝜋𝑠𝛿(𝑢)‖𝐿𝑝(𝛺𝛿 ) ≤
|

|

|

|

|

|

|

|

|

[𝑢]𝑠𝛿
|

|

|

|

|

|

|

|

|𝐻̃𝑠,𝑝,𝛿 (𝛺)
= |

|

|

|

|

|

|

|

|

̃𝑠
𝛿 ̃

𝑠
𝛿[𝑢]

𝑠
𝛿
|

|

|

|

|

|

|

|

|𝐻̃𝑠,𝑝,𝛿 (𝛺)
≤ 𝐶‖̃𝑠𝛿[𝑢]

𝑠
𝛿‖𝑊 1,𝑝(𝛺)

= 𝐶‖[𝑠𝛿𝑢]‖𝑊 1,𝑝(𝛺) = 𝐶‖∇(𝑠𝛿𝑢)‖𝐿𝑝(𝛺;R𝑛) = 𝐶‖𝐷𝑠
𝛿𝑢‖𝐿𝑝(𝛺;R𝑛),

ith a constant 𝐶 > 0 independent of 𝑠. □

Second, one obtains the following compactness result. It can be seen as the trace-free analogue to [4, Theorem 2.3] in the setting
f complementary-value spaces.

emma 4.8 (Compactness in 𝐻𝑠,𝑝,𝛿(𝛺)). Let 𝑝 ∈ (1,∞), then any sequence (𝑢𝑗 )𝑗 ⊂ 𝐻𝑠,𝑝,𝛿(𝛺) converging weakly to 𝑢 in 𝐻𝑠,𝑝,𝛿(𝛺) satisfies

𝑢𝑗 − 𝜋𝑠𝛿(𝑢𝑗 ) → 𝑢 − 𝜋𝑠𝛿(𝑢) in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞.

roof. Using the extension operator modulo 𝑁𝑠,𝑝,𝛿(𝛺) from (4.3), we define

ℎ𝑗 ∶= 𝑠𝛿𝑢𝑗 − 𝑢𝑗 + 𝑢 − 𝑠𝛿𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) for all 𝑗.

Since 𝑠𝛿𝑢𝑗 → 𝑠𝛿𝑢 in 𝐿𝑝(𝛺𝛿) according to (4.4), it follows that 𝑢𝑗 + ℎ𝑗 → 𝑢 in 𝐿𝑝(𝛺𝛿), and hence,

lim
𝑗→∞

‖𝑢𝑗 − 𝑢 − 𝜋𝑠𝛿(𝑢𝑗 − 𝑢)‖𝐿𝑝(𝛺𝛿 ) ≤ lim
𝑗→∞

‖𝑢𝑗 − 𝑢 + ℎ𝑗‖𝐿𝑝(𝛺𝛿 ) = 0,

y definition of the metric projection. This shows that

𝑢𝑗 − 𝜋𝑠𝛿(𝑢𝑗 − 𝑢) → 𝑢 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞.

n view of (4.7) and the continuity of 𝜋𝑠𝛿 , we then find that

𝑢𝑗 − 𝜋𝑠𝛿(𝑢𝑗 ) = 𝑢𝑗 − 𝜋𝑠𝛿(𝑢𝑗 − 𝑢) − 𝜋
𝑠
𝛿(𝑢𝑗 − 𝜋

𝑠
𝛿(𝑢𝑗 − 𝑢)) → 𝑢 − 𝜋𝑠𝛿(𝑢) in 𝐿𝑝(𝛺𝛿),
20

hich concludes the proof. □
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5. Nonlocal differential inclusion problems

In the present section we discuss results on the solvability of differential inclusion problems involving the nonlocal gradient.
his means that for a given set 𝐸 ⊂ R𝑚×𝑛, we aim to find all 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚) that satisfy

𝐷𝑠
𝛿𝑢 ∈ 𝐸 a.e. in 𝛺, (5.1)

nd optionally, also a boundary condition in the single layer 𝛤𝛿 or the double layer 𝛤±𝛿 . Problems of the type (5.1) have not
ppeared in the literature before, although related results such as fractional Korn inequalities have been studied recently in various
ettings [7,35,46].

Throughout this section, let 𝑝 ∈ [1,∞] and 𝛺 ⊂ R𝑛 be a bounded 𝐶1,1-domain. Additionally, whenever we work with Dirichlet
onditions in the double layer 𝛤±𝛿 , we also assume that 𝛺−𝛿 ≠ ∅ and |

|

𝜕𝛺−𝛿
|

|

= 0. The set 𝑁𝑠,𝑝,𝛿(𝛺) naturally plays a key role in
he discussion of (5.1), considering that it can be interpreted as the solution to the most basic nonlocal inclusion, namely, with the
hoice 𝐸 = {0}. On the one hand, for any solution to (5.1), adding a function from 𝑁𝑠,𝑝,𝛿(𝛺) generates a new solution, that is, if
∈ 𝐻𝑠,𝑝,𝛿(𝛺) solves (5.1), then so does any other element in [𝑢]𝑠𝛿 = 𝑢+𝑁𝑠,𝑝,𝛿(𝛺), cf. Section 4.1. When 𝑝 ∈ (1, 2

1−𝑠 ), any single-layer
oundary condition 𝑔 ∈ 𝐿𝑝(𝛤𝛿) can therefore be attained, by the characterization of 𝑁𝑠,𝑝,𝛿(𝛺) in Theorem 3.8.

Our overall strategy in dealing with (5.1) is to relate them with classical differential inclusions, and to carry over the by now
ell-known results on their classical counterparts, that is, solving

∇𝑣 ∈ 𝐸 a.e. in 𝛺 (5.2)

or 𝑣 ∈ 𝑊 1,𝑝(𝛺), also subject to boundary conditions. A rich literature on the latter has emerged over the last decades, including [16–
8,43,49], see also [15,42,45] for an overview. While there is no unified theory available, the results fall roughly into two groups,
elating to the complementary themes of rigidity and flexibility. This division, which we will adopt here as well, is partly motivated
y models in materials science, where differential inclusions appear naturally when studying microstructure formation, cf. [42,45].

The connection between nonlocal and standard gradients established in Section 4.1 implies that (5.1) and (5.2) are equivalent
hen it comes to solvability. Indeed, due to Theorem 4.1 the map ̃𝑠𝛿 gives a bijection between the solutions of (5.2) modulo

onstants and the solutions to (5.1) modulo functions in 𝑁𝑠,𝑝,𝛿(𝛺). In the following, we take a look into selected aspects of flexibility
nd rigidity in the nonlocal setting, starting with the latter.

One calls the classical differential inclusion (5.2) rigid, if all its solutions 𝑣 have constant gradient, meaning that, 𝑣(𝑥) = 𝑙𝐴(𝑥)+𝑐 =
𝑥 + 𝑐 for 𝐴 ∈ 𝐸 and 𝑐 ∈ R𝑚; recall the notation 𝑙𝐴 with 𝐴 ∈ R𝑚×𝑛 for the linear function 𝑙𝐴(𝑥) = 𝐴𝑥 with 𝑥 ∈ R𝑛. The nonlocal
radient of a linear function agrees with the classical gradient, since

𝐷𝑠
𝛿𝑙𝐴 = 𝑄𝑠𝛿 ∗ ∇𝑙𝐴 = 𝑄𝑠𝛿 ∗ 𝐴 = 𝐴, (5.3)

here we have used ‖𝑄𝑠𝛿‖𝐿1(R𝑛) = 1 (see also [7, Proposition 4.1]). Based on this observation, one obtains that rigidity carries over
o the nonlocal setting in the following sense.

orollary 5.1 (Nonlocal Rigidity). Let 𝐸 ⊂ R𝑚×𝑛 be such that the differential inclusion (5.2) is rigid. Then, all solutions 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺) to
he nonlocal inclusion

𝐷𝑠
𝛿𝑢 ∈ 𝐸 a.e. in 𝛺, (5.4)

re of the form 𝑢 = 𝑙𝐴 + ℎ with 𝐴 ∈ 𝐸 and ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺). In particular, if 𝑝 ∈ (1, 2
1−𝑠 ), then for any 𝑔 ∈ 𝐿𝑝(𝛤𝛿), there is a solution 𝑢 of

5.4) with 𝑢 = 𝑔 a.e. in 𝛤𝛿 .

roof. As 𝑢 ∈ [𝑙𝐴]𝑠𝛿 with 𝐴 ∈ 𝐸 clearly solves (5.4) in view of (5.3), it remains to show that these are the only solutions. Indeed, by
he assumption of rigidity, the solutions to (5.2) are exactly the functions that lie in [𝑙𝐴] for some 𝐴 ∈ 𝐸, so that any 𝑢 solving (5.4)
eeds to satisfy ̃𝑠𝛿[𝑢]

𝑠
𝛿 = [𝑙𝐴]. Since also ̃𝑠𝛿[𝑙𝐴]

𝑠
𝛿 = [𝑙𝐴] and ̃𝑠𝛿 is injective according to Theorem 4.1, we finally conclude that

− 𝑙𝐴 ∈ 𝑁𝑠,𝑝,𝛿(𝛺).
When the assumptions of Theorem 3.8 are satisfied, we may use Theorem 3.8 to find that any boundary condition is attained in

𝑠,𝑝,𝛿(𝛺), which yields the second part of the statement. □

The preceding result characterizes all solutions in terms of the set 𝑁𝑠,𝑝,𝛿(𝛺) and shows that there is no restriction on the boundary
onditions that can be achieved in the single layer. If one prescribes boundary conditions in the double layer 𝛤±𝛿 , instead, the set
f solutions is considerably more restrictive. Our next statement addresses a nonlocal inclusion problem with linear boundary data
𝐴 with 𝐴 ∈ R𝑚×𝑛, precisely,

⎧

⎪

⎨

⎪

⎩

𝐷𝑠
𝛿𝑢 ∈ 𝐸 a.e. in 𝛺−𝛿 ,

𝐷𝑠
𝛿𝑢 = 𝐴 a.e. in 𝛤−𝛿 ,

𝑢 = 𝑙𝐴 a.e. in 𝛤±𝛿 ,

(5.5)

or 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺). Note that the reason for prescribing the nonlocal gradient in the collar 𝛤−𝛿 is that the condition 𝑢 = 𝑙𝐴 a.e. in 𝛤±𝛿
utomatically implies 𝐷𝑠

𝛿𝑢 = 𝐴 near 𝜕𝛺 in light of (H2). The inclusion 𝐷𝑠
𝛿𝑢 ∈ 𝐸 a.e. in 𝛺 would therefore only be possible if 𝐴 ∈ 𝐸,
21

hich renders the problem trivial. We now show a rigidity statement for (5.5).
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Corollary 5.2 (Nonlocal Rigidity with Linear Boundary Conditions). Let 𝐸 ⊂ R𝑚×𝑛 be such that the inclusion (5.2) is rigid and let 𝐴 ∈ R𝑚×𝑛.
hen, the nonlocal inclusion problem (5.5) has a solution if and only if 𝐴 ∈ 𝐸, which is then uniquely given by 𝑢 = 𝑙𝐴.

Proof. Let 𝑢 be a solution of (5.5) and define 𝑣 ∶= 𝑠𝛿𝑢 ∈ 𝑊 1,𝑝(𝛺), which then satisfies ∇𝑣 ∈ 𝐸 a.e. in 𝛺−𝛿 and ∇𝑣 = 𝐴 a.e. in 𝛤−𝛿 ,
cf. Lemma 2.4. Since (5.2) is rigid, there is an 𝐴′ ∈ 𝐸 such that ∇𝑣 = 𝐴′ a.e. in 𝛺−𝛿 . Hence, it holds that 𝑣 = 𝑙𝐴′ + 𝑐 a.e. in 𝛺−𝛿 for
some 𝑐 ∈ R. Moreover, for a.e. 𝑥 ∈ 𝛺 ⧵ (𝛺−𝛿 + supp(𝑄𝑠𝛿)) (by (H2), this open set is non-empty), we obtain

𝑣(𝑥) = (𝑄𝑠𝛿 ∗ 𝑢)(𝑥) = (𝑄𝑠𝛿 ∗ 𝑙𝐴)(𝑥) = 𝐴𝑥.

Combining this with ∇𝑣 = 𝐴 a.e. in 𝛤−𝛿 , yields that 𝑣 = 𝑙𝐴 a.e. in 𝛤−𝛿 . We conclude that
{

𝑣 = 𝑙𝐴′ + 𝑐 a.e. in 𝛺−𝛿 ,
𝑣 = 𝑙𝐴 a.e. in 𝛤−𝛿 ,

so that we must have 𝑙𝐴′ + 𝑐 = 𝑙𝐴 on 𝜕𝛺−𝛿 for 𝑣 to be a Sobolev function. Unless 𝐴 = 𝐴′ and 𝑐 = 0, we find that the set where
𝑙𝐴′ + 𝑐 = 𝑙𝐴 is an affine subspace of dimension at most 𝑛 − 1, which cannot contain the boundary of the bounded open set 𝛺−𝛿 .
Therefore, we must have 𝐴 = 𝐴′ and 𝑐 = 0, which yields, in particular, that 𝐴 ∈ 𝐸 and 𝐷𝑠

𝛿𝑢 = ∇𝑣 = 𝐴 a.e. in 𝛺. We now infer
from the nonlocal Poincaré inequality for double-layer boundary conditions (see [6, Theorem 6.1]) that 𝑢 = 𝑙𝐴 is indeed the only
solution. □

Next is a statement on flexibility for (5.5), which also allows for solutions with non-constant nonlocal gradients and reveals a
relation between the attainable boundary conditions and the set 𝐸. In doing so, we restrict our attention to a weaker notion of
solutions, though, calling a sequence (𝑢𝑗 )𝑗 ⊂ 𝐻𝑠,∞,𝛿(𝛺;R𝑚) an approximate solution to (5.5), if

⎧

⎪

⎨

⎪

⎩

dist(𝐷𝑠
𝛿𝑢𝑗 , 𝐸) → 0 in measure on 𝛺−𝛿 ,

𝐷𝑠
𝛿𝑢𝑗 → 𝐴 in measure on 𝛤−𝛿 ,

𝑢𝑗 = 𝑙𝐴 in 𝛤±𝛿 .

(5.6)

In the classical case, it is well-known that approximate solutions to (5.2) subject to linear boundary values 𝑙𝐴 exist if and only
if 𝐴 lies in the quasiconvex hull of 𝐸 defined by

𝐸𝑞𝑐 ∶=
{

𝐵 ∈ R𝑚×𝑛 ∶ 𝑓 (𝐵) ≤ sup
𝐸
𝑓 for all quasiconvex 𝑓 ∶ R𝑚×𝑛 → R

}

,

see e.g., [42, Theorem 4.10], [15, Chapter 7]. For the approximate solutions as in (5.6), we can use the translation method to prove
an analogous statement.

Proposition 5.3 (Approximate Solutions to Nonlocal Differential Inclusions). Let 𝐸 ⊂ R𝑚×𝑛 be compact and 𝐴 ∈ R𝑚×𝑛. Then, (5.5) admits
an approximate solution in the sense of (5.6) if and only if 𝐴 ∈ 𝐸𝑞𝑐 .

Proof. First, suppose that 𝐴 ∈ 𝐸𝑞𝑐 , then by [42, Theorem 4.10], there is a bounded sequence (𝑣𝑗 )𝑗 ⊂ 𝑊
1,∞
0 (𝛺;R𝑚) such that

dist(𝐴 + ∇𝑣𝑗 , 𝐸) → 0 in measure on 𝛺. (5.7)

We may assume without loss of generality that 𝑣𝑗 → 0 in 𝐿∞(𝛺;R𝑚) and hence, also ∇𝑣𝑗
∗
⇀ 0 in 𝐿∞(𝛺;R𝑚×𝑛); otherwise, we glue

together suitably scaled and translated copies of 𝑣𝑗 for each 𝑗.
After identifying 𝑣𝑗 with its extension to R𝑛 by zero, we define the sequence (𝑢̃𝑗 )𝑗 by

𝑢̃𝑗 ∶= 𝑠
𝛿𝑣𝑗 ∈ 𝐻𝑠,∞,𝛿(R𝑛;R𝑚) for 𝑗 ∈ N.

Since 𝐷𝑠
𝛿 𝑢̃𝑗 = ∇𝑣𝑗

∗
⇀ 0 in 𝐿∞(R𝑛;R𝑚×𝑛), and the sequence (𝑣𝑗 )𝑗 is also bounded in 𝑊 1,𝑝(R𝑛;R𝑚), it follows along with the weak

continuity of 𝑠
𝛿 that 𝑢̃𝑗 ⇀ 0 in 𝐻𝑠,𝑝,𝛿(R𝑛;R𝑚) = 𝐻𝑠,𝑝(R𝑛;R𝑚) as 𝑗 → ∞ for all 𝑝 ∈ (1,∞). In addition, the compact embedding of

𝐻𝑠,𝑝(R𝑛;R𝑚) into 𝐿∞(𝛺𝛿 ;R𝑚) for 𝑠𝑝 > 𝑛 (see Section 2.2), yields

𝑢̃𝑗 → 0 in 𝐿∞(𝛺𝛿 ;R𝑚) and 𝑢̃𝑗
∗
⇀ 0 in 𝐻𝑠,∞,𝛿(𝛺;R𝑚). (5.8)

We now introduce a sequence of cut-off functions (𝜒𝑗 )𝑗 ⊂ 𝐶∞
𝑐 (𝛺−𝛿 ; [0, 1]) such that

|

|

|

𝛺−𝛿 ⧵ {𝜒𝑗 = 1}||
|

→ 0 and Lip(𝜒𝑗 )‖𝑢̃𝑗‖𝐿∞(𝛺𝛿 ;R𝑚) → 0 as 𝑗 → ∞, (5.9)

where Lip(𝜒𝑗 ) denotes the Lipschitz constant of 𝜒𝑗 , and we define (𝑢𝑗 )𝑗 via

𝑢𝑗 ∶= 𝜒𝑗 𝑢̃𝑗 ∈ 𝐻𝑠,∞,𝛿(𝛺;R𝑚),

which guarantees

𝑢𝑗 = 0 in 𝛤±𝛿 . (5.10)

Moreover, by the nonlocal Leibniz rule (see [14, Lemma 2]),

𝐷𝑠𝑢 = 𝜒 𝐷𝑠 𝑢̃ +𝐾 (𝑢̃ ) = 𝜒 ∇𝑣 +𝐾 (𝑢̃ ), (5.11)
22
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where 𝐾𝜒𝑗 ∶ 𝐿
∞(𝛺𝛿) → 𝐿∞(𝛺;R𝑛) are bounded linear operators that satisfy

‖𝐾𝜒𝑗 (𝑢̃𝑗 )‖𝐿∞(𝛺;R𝑚×𝑛) ≤ 𝐶Lip(𝜒𝑗 )‖𝑢̃𝑗‖𝐿∞(𝛺𝛿 ;R𝑚) → 0 as 𝑗 → ∞; (5.12)

the last convergence follows from (5.9). Since dist(𝐴 + 𝜒𝑗∇𝑣𝑗 , 𝐸) → 0 in measure on 𝛺−𝛿 due to (5.7) and the first convergence
in (5.9), we conclude along with (5.11) and (5.12) that

dist(𝐴 +𝐷𝑠
𝛿𝑢𝑗 , 𝐸) → 0 in measure on 𝛺−𝛿 .

Moreover, as [14, Lemma 3] yields convergence 𝐷𝑠
𝛿𝑢𝑗 → 0 in 𝐿∞ in any compactly contained subset of the collar 𝛤−𝛿 , we have that

𝐴 +𝐷𝑠
𝛿𝑢𝑗 → 𝐴 in measure on 𝛤−𝛿 as 𝑗 → ∞.

ence, we obtain the desired approximate solution to (5.5), after adding the linear function 𝑙𝐴 to (𝑢𝑗 )𝑗 .
Conversely, if (𝑢𝑗 )𝑗 ⊂ 𝐻𝑠,∞,𝛿(𝛺;R𝑚) is a sequence satisfying (5.6), we set 𝑣𝑗 ∶= 𝑠𝛿𝑢𝑗 for all 𝑗 ∈ N to find that (𝑣𝑗 )𝑗 ⊂ 𝑊 1,∞(𝛺;R𝑚)

is a sequence with 𝑣𝑗 = 𝑙𝐴 on 𝜕𝛺 for all 𝑗 ∈ N in the sense of traces, and
{

dist(∇𝑣𝑗 , 𝐸) = dist(𝐷𝑠
𝛿𝑢𝑗 , 𝐸) → 0 in measure on 𝛺−𝛿 as 𝑗 → ∞,

∇𝑣𝑗 = 𝐷𝑠
𝛿𝑢𝑗 → 𝐴 in measure on 𝛤−𝛿 as 𝑗 → ∞.

A small adaptation to the argument in [42, Theorem 4.10 (i)] now shows that 𝐴 ∈ 𝐸𝑞𝑐 , as desired. □

6. Well-posedness and localization of nonlocal Neumann-type problems

This section is concerned with the analysis of nonlocal differential equations with homogeneous Neumann-type boundary
conditions. In fact, it even covers a more general setting with natural boundary conditions. Our main results are the well-posedness
for these problems for any fixed fractional parameter 𝑠 ∈ (0, 1) and a rigorous proof of localization, i.e., the convergence to the
classical analogues of these boundary-value problems as the fractional parameter 𝑠 goes to 1.

We approach these problems from the variational perspective, where the objects of interest are the associated energy functionals:
For 𝛺 ⊂ R𝑛 a bounded Lipschitz domain and 𝑝 ∈ (1,∞), consider  𝑠

𝛿 ∶ 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚) → R∞ given by

 𝑠
𝛿 (𝑢) = ∫𝛺

𝑓 (𝑥,𝐷𝑠
𝛿𝑢) 𝑑𝑥 − ∫𝛺𝛿

𝐹 ⋅ 𝑢 𝑑𝑥, (6.1)

here 𝐹 ∈ 𝐿𝑝′ (𝛺𝛿 ;R𝑚) with 𝑝′ the dual exponent of 𝑝 and the Carathéodory function 𝑓 ∶ 𝛺 × R𝑚×𝑛 → R∞ are suitably given.
Due to the absence of any constraints in the space of admissible functions 𝐻𝑠,𝑝,𝛿(𝛺), the minimization of  𝑠

𝛿 gives rise to natural
oundary conditions when passing to the Euler–Lagrange equations. Nonlocal variational problems on complementary-value spaces,
n contrast, lead to Dirichlet boundary-value problems, see e.g., [6, Section 8].

.1. Existence theory for a class of nonlocal Neumann-type variational problems

In this section we prove the existence of minimizers of the functional in (6.1), on a suitable subspace of 𝐻𝑠,𝑝,𝛿(𝛺) where
he Poincaré-Wirtinger inequality from Section 4.4 can be applied. Precisely, recalling the metric projection 𝜋𝑠𝛿 ∶ 𝐿𝑝(𝛺𝛿 ;R𝑚) →
𝑠,𝑝,𝛿(𝛺;R𝑚) from Section 4.4 (extended to vector-valued functions), we introduce the sets

𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂ = {𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚) ∶ 𝜋𝑠𝛿(𝑢) = 0}.

or 𝑝 = 2, this corresponds to the orthogonal complement of 𝑁𝑠,2,𝛿(𝛺;R𝑚) in 𝐿2, whereas for the case 𝑝 ≠ 2, it need not be a linear
ubspace, given the nonlinearity of the metric projection.

We now present the main result of this section, which establishes the existence of minimizers for  𝑠
𝛿 on the subspaces

𝑠,𝑝,𝛿(𝛺;R𝑚)⟂.

heorem 6.1 (Existence of <inimizers for  𝑠
𝛿 ). Let 𝑝 ∈ (1,∞), 𝐹 ∈ 𝐿𝑝′ (𝛺𝛿 ;R𝑚) and 𝑓 ∶ 𝛺 ×R𝑚×𝑛 → R∞ ∶= R∪ {∞} be a Carathéodory

ntegrand such that

𝑓 (𝑥,𝐴) ≥ 𝑐
(

|𝐴|𝑝 − 1
)

for a.e. 𝑥 ∈ 𝛺 and all 𝐴 ∈ R𝑚×𝑛

ith a constant 𝑐 > 0. If 𝑣↦ ∫𝛺 𝑓 (𝑥,∇𝑣) 𝑑𝑥 is weakly lower semicontinuous on 𝑊
1,𝑝(𝛺;R𝑚), then the functional  𝑠

𝛿 in (6.1), i.e.,

 𝑠
𝛿 (𝑢) = ∫𝛺

𝑓 (𝑥,𝐷𝑠
𝛿𝑢) 𝑑𝑥 − ∫𝛺𝛿

𝐹 ⋅ 𝑢 𝑑𝑥,

dmits a minimizer over 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂.
23
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Proof. We apply the direct method in the calculus of variations. Note first that 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂ is a weakly closed subset
of 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚) as a consequence of Lemma 4.8. The coercivity then follows from the lower bound on 𝑓 along with the
oincaré-Wirtinger inequality from Lemma 4.7, which reduces to

‖𝑢‖𝐿𝑝(𝛺𝛿 ;R𝑚) ≤ 𝐶‖𝐷𝑠
𝛿𝑢‖𝐿𝑝(𝛺;R𝑚×𝑛),

or 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂. For the weak lower semicontinuity of  𝑠
𝛿 , we observe that if 𝑢𝑗 ⇀ 𝑢 in 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚), then 𝑣𝑗 ∶= 𝑠𝛿𝑢𝑗 ⇀

𝑠
𝛿𝑢 =∶ 𝑣 in 𝑊 1,𝑝(𝛺;R𝑚) with ∇𝑣𝑗 = 𝐷𝑠

𝛿𝑢𝑗 for all 𝑗 and ∇𝑣 = 𝐷𝑠
𝛿𝑢, cf. Lemma 2.4. Hence,

 𝑠
𝛿 (𝑢) = ∫𝛺

𝑓 (𝑥,∇𝑣) 𝑑𝑥 − ∫𝛺𝛿
𝐹 ⋅ 𝑢 𝑑𝑥

≤ lim inf
𝑗→∞

(

∫𝛺
𝑓 (𝑥,∇𝑣𝑗 ) 𝑑𝑥 − ∫𝛺𝛿

𝐹 ⋅ 𝑢𝑗 𝑑𝑥

)

= lim inf
𝑗→∞

 𝑠
𝛿 (𝑢𝑗 ),

howing that  𝑠
𝛿 is weakly lower semicontinuous on 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚). In combination with the coercivity, this yields the desired

xistence of a minimizer of  𝑠
𝛿 in 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂. □

emark 6.2. (a) For the sake of generality, the previous theorem assumes that the classical integral functional (with standard
radients) associated to  𝑠

𝛿 is weakly lower semicontinuous. Well-known sufficient conditions for this include polyconvexity of the
ntegrand 𝑓 in the second argument or quasiconvexity of the latter along with a suitable upper bound, see e.g., [15, Theorems 8.11
nd 8.31].

(b) Note that if 𝐹 ∈ 𝐿𝑝′ (𝛺𝛿 ;R𝑚) satisfies the compatibility condition

∫𝛺𝛿
𝐹 ⋅ ℎ 𝑑𝑥 = 0 for all ℎ ∈ 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚), (6.2)

then  𝑠
𝛿 is invariant under translations in 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚). As a consequence of Theorem 6.1,  𝑠

𝛿 then admits minimizers over the whole
space 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚). ▵

As a consequence of Theorem 6.1, and specifically Remark 6.2, one can infer, by passing to Euler–Lagrange equations, the
existence of weak solutions for a class of nonlocal differential equations with natural boundary conditions. Namely, suppose that 𝐹
satisfies (6.2) and let 𝑓 be continuously differentiable in its second argument and 𝐶 > 0 such that

|𝑓 (𝑥,𝐴)| ≤ 𝐶(1 + |𝐴|𝑝) and |

|

𝐷𝐴𝑓 (𝑥,𝐴)|| ≤ 𝐶(1 + |𝐴|𝑝−1) for all (𝑥,𝐴) ∈ 𝛺𝛿 × R𝑚×𝑛, (6.3)

with 𝐷𝐴𝑓 the differential of 𝑓 with respect to its second argument. Then, using a standard argument, see [15, Theorem 3.37], we
find that the minimizers 𝑢 ∈ 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚) of  𝑠

𝛿 solve the weak Euler–Lagrange equation

∫𝛺
𝐷𝐴𝑓 (𝑥,𝐷𝑠

𝛿𝑢) ⋅𝐷
𝑠
𝛿𝑣 𝑑𝑥 = ∫𝛺𝛿

𝐹 ⋅ 𝑣 𝑑𝑥 for all 𝑣 ∈ 𝐻𝑠,𝑝,𝛿(𝛺;R𝑚). (6.4)

We note that the compatibility condition in (6.2) is also necessary for (6.4) to hold, since the left hand-side is zero for 𝑣 ∈
𝑁𝑠,𝑝,𝛿(𝛺;R𝑚). Moreover, by the definition of the weak nonlocal divergence via nonlocal integration by parts, Eq. (6.4) corresponds
to the weak formulation of

− div𝑠𝛿
(

1𝛺𝐷𝐴𝑓 (⋅, 𝐷𝑠
𝛿𝑢)

)

= 𝐹 in 𝛺𝛿 . (6.5)

Within the region 𝛺−𝛿 , this equation reduces to the nonlocal Euler–Lagrange equation from [6, Theorem 8.2], while in the double
boundary layer 𝛤±𝛿 , the equation takes into account the geometry of the boundary 𝜕𝛺. More precisely, one obtains

{

−div𝑠𝛿(𝐷𝐴𝑓 (⋅, 𝐷𝑠
𝛿𝑢)) = 𝐹 in 𝛺−𝛿 ,

 𝑠
𝛿 (𝐷𝐴𝑓 (⋅, 𝐷𝑠

𝛿𝑢)) = 𝐺 in 𝛤±𝛿 ,
(6.6)

where 𝐺 ∶= 𝐹 |𝛤±𝛿 and  𝑠
𝛿 ∶= −div𝑠𝛿(1𝛺 ⋅ ) coincides with the nonlocal boundary operator, recently introduced in [3, Definition 3.1]

to prove a concise nonlocal integration by parts formula.
Now, if 𝑢 solves (6.5) or (6.6) (weakly), the nonlocal divergence imposes that 1𝛺𝐷𝐴𝑓 (⋅, 𝐷𝑠

𝛿𝑢) must be regular enough across 𝜕𝛺.
As 𝑠 ↑ 1, we expect to recover the natural boundary conditions 𝐷𝐴𝑓 (⋅,∇𝑢) ⋅ 𝜈 = 0 on 𝜕𝛺 with 𝜈 an outer normal to 𝜕𝛺. This intuition
is made rigorous in the next section.

6.2. Localization for 𝑠 ↑ 1

We now turn to studying the limiting behavior of the nonlocal variational problem from Theorem 6.1, and the closely related
nonlocal Neumann-type problems, as the fractional parameter 𝑠 tends to 1. Our main result in this section (see Theorem 6.4)
rigorously confirms the expectation that these problems localize, that is, they converge to their classical counterparts with usual
gradients.
24
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To start, let us collect in the next lemma some preparatory tools revolving around the asymptotic behavior of the sets 𝑁𝑠,𝑝,𝛿(𝛺)

nd 𝑁𝑠,𝑝,𝛿(𝛺)⟂ as 𝑠 tends to 1. To capture the limit objects, we introduce 𝐻1,𝑝,𝛿(𝛺) ∶= {𝑢 ∈ 𝐿𝑝(𝛺𝛿) ∶ 𝑢|𝛺 ∈ 𝑊 1,𝑝(𝛺)} and

𝑁1,𝑝,𝛿(𝛺) = {𝑢 ∈ 𝐻1,𝑝,𝛿(𝛺) ∶ ∇𝑢 = 0 in 𝛺} = {𝑢 ∈ 𝐿𝑝(𝛺𝛿) ∶ 𝑢|𝛺 is constant}. (6.7)

along with its corresponding metric projection 𝜋1𝛿 ∶ 𝐿𝑝(𝛺𝛿) → 𝑁1,𝑝,𝛿(𝛺), and we also set

𝑁1,𝑝,𝛿(𝛺)⟂ ∶= {𝑢 ∈ 𝐻1,𝑝,𝛿(𝛺;R𝑚) ∶ 𝜋1𝛿 (𝑢) = 0}.

Given the definition in (6.7), the projection 𝜋1𝛿 (𝑢) agrees with 𝑢 in 𝛤𝛿 and is constant on 𝛺. Considering that arg min𝑐∈R ‖𝑢 − 𝑐‖𝐿𝑝(𝛺) =
0 is equivalent to ∫𝛺 |𝑢|𝑝−1 sign(𝑢) 𝑑𝑥 = 0 for any 𝑢 ∈ 𝐿𝑝(𝛺𝛿), one can represent 𝑁1,𝑝,𝛿(𝛺)⟂ as

𝑁1,𝑝,𝛿(𝛺)⟂ =
{

𝑢 ∈ 𝐿𝑝(𝛺𝛿) ∶ 𝑢|𝛺 ∈ 𝑊 1,𝑝(𝛺), 𝑢 = 0 a.e. in 𝛤𝛿 , ∫𝛺
|𝑢|𝑝−1 sign(𝑢) 𝑑𝑥 = 0

}

. (6.8)

When 𝑝 = 2, the nonlinear integral condition in (6.8) reduces simply to the requirement of zero mean value.

Lemma 6.3. Let 𝑝 ∈ (1,∞) and let (𝑠𝑗 )𝑗 ⊂ (0, 1) be a sequence converging to 1. Then, these statements hold:

(i) For all 𝑣 ∈ 𝑊 1,𝑝(R𝑛) it holds that 𝑠𝑗
𝛿 𝑣 → 𝑣 in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞.

(ii) If (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) converges to 𝑢 ∈ 𝐿𝑝(𝛺𝛿), then 𝜋
𝑠𝑗
𝛿 (𝑢𝑗 ) → 𝜋1𝛿 (𝑢) as 𝑗 → ∞.

(iii) Let (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) with 𝑢𝑗 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺)⟂ for all 𝑗. If sup𝑗 ‖𝐷
𝑠𝑗
𝛿 𝑢𝑗‖𝐿𝑝(𝛺;R𝑛) < ∞, then there is a 𝑢 ∈ 𝑁1,𝑝,𝛿(𝛺)⟂ such that (up to a

non-relabeled subsequence)

𝑢𝑗 → 𝑢 in 𝐿𝑝(𝛺𝛿) and 𝐷
𝑠𝑗
𝛿 𝑢𝑗 ⇀ ∇𝑢 in 𝐿𝑝(𝛺;R𝑛) as 𝑗 → ∞.

Proof. Part (𝑖). Let 𝑣 ∈ 𝑊 1,𝑝(R𝑛). In light of (2.6) and (2.15), we find for 0 < 𝑠̄ ≤ inf 𝑗 𝑠𝑗 that

sup
𝑗

‖𝑠𝑗
𝛿 𝑣‖𝐻 𝑠̄,𝑝(R𝑛) ≤ sup

𝑗
‖𝑠𝑗

𝛿 𝑣‖𝐻𝑠𝑗 ,𝑝(R𝑛) < ∞.

Due to the compact embedding of 𝐻 𝑠̄,𝑝(R𝑛) into 𝐿𝑝(𝛺2𝛿) (see Section 2.2), there is a subsequence (not relabeled) such that 𝑠𝑗
𝛿 𝑣 → 𝑤

in 𝐿𝑝(𝛺2𝛿) for some 𝑤 ∈ 𝐿𝑝(𝛺2𝛿). To identify 𝑤, consider an arbitrary test function 𝜑 ∈ 𝐶∞
𝑐 (𝛺𝛿). As shown in [14, Eq. (3.4)], it

holds that 𝑠𝑗𝛿 𝜑 = 𝑄
𝑠𝑗
𝛿 ∗ 𝜑→ 𝜑 uniformly as 𝑗 → ∞. Together with Fubini’s theorem, this implies

∫𝛺𝛿
𝑤𝜑𝑑𝑥 = lim

𝑗→∞∫𝛺2𝛿

(𝑠𝑗
𝛿 𝑣) (𝑄

𝑠𝑗
𝛿 ∗ 𝜑) 𝑑𝑥 = lim

𝑗→∞∫𝛺𝛿
[𝑄

𝑠𝑗
𝛿 ∗ (𝑠𝑗

𝛿 𝑣)]𝜑𝑑𝑥

= lim
𝑗→∞∫𝛺𝛿

(𝑠𝑗𝛿 
𝑠𝑗
𝛿 𝑣)𝜑𝑑𝑥 = ∫𝛺𝛿

𝑣𝜑𝑑𝑥,

from which we infer 𝑤 = 𝑣 on 𝛺𝛿 .
Part (𝑖𝑖). Since 0 ∈ 𝑁𝑠,𝑝,𝛿(𝛺) for all 𝑠 ∈ (0, 1], we deduce from the definition of the metric projection that

‖𝜋
𝑠𝑗
𝛿 (𝑢𝑗 )‖𝐿𝑝(𝛺𝛿 ) ≤ 2‖𝑢𝑗‖𝐿𝑝(𝛺𝛿 ) for all 𝑗.

As (𝑢𝑗 )𝑗 is bounded in 𝐿𝑝(𝛺𝛿), so is (𝜋
𝑠𝑗
𝛿 (𝑢𝑗 ))𝑗 , and there exists a (non-relabeled) subsequence and a 𝑤 ∈ 𝐿𝑝(𝛺𝛿) with 𝜋𝑠𝑗𝛿 (𝑢𝑗 ) ⇀ 𝑤 in

𝐿𝑝(𝛺𝛿) as 𝑗 → ∞. For any test function 𝜓 ∈ 𝐶∞
𝑐 (𝛺;R𝑛), one then obtains

∫𝛺
𝑤 div𝜓 𝑑𝑥 = lim

𝑗→∞∫𝛺𝛿
𝜋
𝑠𝑗
𝛿 (𝑢𝑗 ) div

𝑠𝑗
𝛿 𝜓 𝑑𝑥 = 0, (6.9)

where the first inequality uses div
𝑠𝑗
𝛿 𝜓 → div𝜓 uniformly on 𝛺𝛿 (see [14, Lemma 7]), and the last equality follows from integration

by parts and the fact that 𝜋𝑠𝑗𝛿 (𝑢𝑗 ) ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺) has zero gradient 𝐷𝑠𝑗
𝛿 for each 𝑗. By (6.9), the limit function 𝑤 is constant on 𝛺, and

hence, 𝑤 ∈ 𝑁1,𝑝,𝛿(𝛺), cf. (6.7). It remains to show that 𝑤 = 𝜋1𝛿 (𝑢) and that 𝜋𝑠𝑗𝛿 (𝑢𝑗 ) converges even strongly.
To this aim, we first construct an auxiliary sequence (ℎ𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) with the properties that

ℎ𝑗 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺) for all 𝑗 and ℎ𝑗 → 𝜋1𝛿 (𝑢) in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞. (6.10)

Since 𝜋1𝛿 (𝑢) is constant on 𝛺, one can find a sequence (𝜑𝑘)𝑘 ⊂ 𝐶∞
𝑐 (𝛺𝛿) that approximates 𝜋1𝛿 (𝑢) strongly in 𝐿𝑝(𝛺𝛿) and satisfies that

𝜑𝑘 is constant on 𝛺 for every 𝑘. Then, 𝑠𝑗
𝛿 𝜑𝑘 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺) because of

𝐷
𝑠𝑗
𝛿 (𝑠𝑗

𝛿 𝜑𝑘) = ∇(𝑠𝑗𝛿 
𝑠𝑗
𝛿 𝜑𝑘) = ∇𝜑𝑘 = 0 on 𝛺,

and, along with part (𝑖),

lim
𝑘→∞

lim
𝑗→∞

‖𝑠𝑗
𝛿 𝜑𝑘 − 𝜋

1
𝛿 (𝑢)‖𝐿𝑝(𝛺𝛿 ) = lim

𝑘→∞
‖𝜑𝑘 − 𝜋1𝛿 (𝑢)‖𝐿𝑝(𝛺𝛿 ) = 0.

By extracting a suitable diagonal sequence, we obtain a sequence as in (6.10).
Now, with (ℎ𝑗 )𝑗 and the convergences 𝑢𝑗 → 𝑢 and 𝜋𝑠𝑗𝛿 (𝑢𝑗 ) ⇀ 𝑤 in 𝐿𝑝(𝛺𝛿) at hand, it follows that

‖𝑢 − 𝜋1(𝑢)‖ 𝑝 ≤ ‖𝑢 −𝑤‖ 𝑝 ≤ lim inf ‖𝑢 − 𝜋
𝑠𝑗 (𝑢 )‖ 𝑝
25

𝛿 𝐿 (𝛺𝛿 ) 𝐿 (𝛺𝛿 ) 𝑗→∞ 𝑗 𝛿 𝑗 𝐿 (𝛺𝛿 )
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𝛤

T

≤ lim sup
𝑗→∞

‖𝑢𝑗 − ℎ𝑗‖𝐿𝑝(𝛺𝛿 ) = ‖𝑢 − 𝜋1𝛿 (𝑢)‖𝐿𝑝(𝛺𝛿 ).

As the inequalities in the previous lines turn to equalities, we infer 𝜋𝑠𝑗𝛿 (𝑢𝑗 ) → 𝑤 = 𝜋1𝛿 (𝑢) in 𝐿𝑝(𝛺𝛿), which finishes the proof of (𝑖𝑖).
Part (𝑖𝑖𝑖). By Lemma 4.7, the sequence (𝑢𝑗 )𝑗 is bounded in 𝐿𝑝(𝛺𝛿). Using that the extension operator 𝑠𝛿 (see Section 4.2) is

uniformly bounded with respect to 𝑠 gives

sup
𝑗

‖𝑠𝑗𝛿 𝑢𝑗‖𝐻 𝑠̄,𝑝(R𝑛) ≤ sup
𝑗

‖𝑠𝑗𝛿 𝑢𝑗‖𝐻𝑠𝑗 ,𝑝(R𝑛) <∞,

with 𝑠̄ ∈ (0, inf 𝑗 𝑠𝑗 ]. By the compact embedding of 𝐻 𝑠̄,𝑝(R𝑛) into 𝐿𝑝(𝛺𝛿), we can extract a subsequence (not relabeled) and find
a 𝑤 ∈ 𝐿𝑝(𝛺𝛿) such that 𝑠𝑗𝛿 𝑢𝑗 → 𝑤 in 𝐿𝑝(𝛺𝛿). A distributional argument in analogy to [14, Lemma 9] allows us to deduce that
𝑤|𝛺 ∈ 𝑊 1,𝑝(𝛺), or equivalently, 𝑤 ∈ 𝐻1,𝑝,𝛿(𝛺), and

𝐷
𝑠𝑗
𝛿 𝑢𝑗 = 𝐷

𝑠𝑗
𝛿 𝑠𝑗𝛿 𝑢𝑗 ⇀ ∇𝑤 in 𝐿𝑝(𝛺;R𝑛) as 𝑗 → ∞. (6.11)

Part (𝑖𝑖) shows on the other hand that 𝜋𝑠𝑗𝛿 (𝑠𝑗𝛿 𝑢𝑗 ) → 𝜋1𝛿 (𝑤) in 𝐿𝑝(𝛺𝛿) as 𝑗 → ∞. Hence,

𝑢𝑗 = 𝑠𝑗𝛿 𝑢𝑗 + (𝑢𝑗 − 𝑠𝑗𝛿 𝑢𝑗 ) = 𝑠𝑗𝛿 𝑢𝑗 − 𝜋
𝑠𝑗
𝛿 (𝑠𝑗𝛿 𝑢𝑗 ) → 𝑤 − 𝜋1𝛿 (𝑤) in 𝐿𝑝(𝛺) as 𝑗 → ∞; (6.12)

note that the second equality is a consequence of 𝑢𝑗 − 𝑠𝑗𝛿 𝑢𝑗 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺), Eq. (4.7), and 𝑢𝑗 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺)⟂, which imply 𝜋𝑠𝑗𝛿 (𝑠𝑗𝛿 𝑢𝑗 ) −
𝑠𝑗𝛿 𝑢𝑗 + 𝑢𝑗 = 𝜋

𝑠𝑗
𝛿 (𝑢𝑗 ) = 0.

Finally, the statement follows from (6.11) and (6.12) with 𝑢 ∶= 𝑤−𝜋1𝛿 (𝑤) ∈ 𝑁1,𝑝,𝛿(𝛺)⟂, and the observation that 𝜋1𝛿 (𝑤) ∈ 𝑁1,𝑝,𝛿(𝛺)
s constant in 𝛺. □

We can now state and prove our localization result in terms of variational convergence for 𝑠 ↑ 1. Using the framework of
-convergence (see e.g., [10,19]) guarantees the convergence of minimizers as a particular consequence.

heorem 6.4 (𝛤 -Convergence to Classical Variational Integral). Let 𝑝 ∈ (1,∞), 𝐹 ∈ 𝐿𝑝′ (𝛺𝛿 ;R𝑚) and 𝑓 ∶ 𝛺 × R𝑚×𝑛 → R∞ be a
Carathéodory integrand such that

𝑓 (𝑥,𝐴) ≥ 𝑐
(

|𝐴|𝑝 − 1
)

for a.e. 𝑥 ∈ 𝛺 and all 𝐴 ∈ R𝑚×𝑛 (6.13)

with a constant 𝑐 > 0. If 𝑣 ↦ ∫𝛺 𝑓 (𝑥,∇𝑣) 𝑑𝑥 is weakly lower semicontinuous on 𝑊
1,𝑝(𝛺;R𝑚), then the family of functionals ( 𝑠

𝛿 )𝑠 with
 𝑠
𝛿 ∶ 𝐿𝑝(𝛺𝛿 ;R𝑚) → R∞ defined by

 𝑠
𝛿 (𝑢) =

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝑓 (𝑥,𝐷𝑠

𝛿𝑢) 𝑑𝑥 − ∫𝛺𝛿
𝐹 ⋅ 𝑢 𝑑𝑥 for 𝑢 ∈ 𝑁𝑠,𝑝,𝛿(𝛺;R𝑚)⟂,

∞ else,

𝛤 -converge with respect to 𝐿𝑝(𝛺𝛿 ;R𝑚)-convergence as 𝑠 → 1 to 1
𝛿 ∶ 𝐿𝑝(𝛺𝛿 ;R𝑚) → R∞ given by

1
𝛿 (𝑢) =

⎧

⎪

⎨

⎪

⎩

∫𝛺
𝑓 (𝑥,∇𝑢) 𝑑𝑥 − ∫𝛺

𝐹 ⋅ 𝑢 𝑑𝑥 for 𝑢 ∈ 𝑁1,𝑝,𝛿(𝛺;R𝑚)⟂,

∞ else,

with 𝑁1,𝑝,𝛿(𝛺;R𝑚)⟂ as in (6.8). In addition, the family ( 𝑠
𝛿 )𝑠 is equi-coercive in 𝐿

𝑝(𝛺𝛿 ;R𝑚).

Proof. Let (𝑠𝑗 )𝑗 be a sequence in (0, 1) that converge to 1 as 𝑗 → ∞.
Step 1: Equi-coercivity. Let (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) with sup𝑗 

𝑠𝑗
𝛿 (𝑢𝑗 ) <∞, in particular, 𝑢𝑗 ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺)⟂ for each 𝑗. The lower bound (6.13)

together with the nonlocal Poincaré inequality in Lemma 4.7 with a constant independent of 𝑠 shows that (𝐷
𝑠𝑗
𝛿 𝑢𝑗 )𝑗 is bounded

in 𝐿𝑝(𝛺;R𝑚×𝑛). Hence, the compactness result in Lemma 6.3 (𝑖𝑖𝑖) is applicable and immediately yields a subsequence of (𝑢𝑗 )𝑗 that
converges strongly in 𝐿𝑝(𝛺;R𝑚) to a function in 𝑁1,𝑝,𝛿(𝛺)⟂.

Step 2: Liminf-inequality. Let (𝑠𝑗 )𝑗 ⊂ (0, 1) and (𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) be sequences such that 𝑠𝑗 → 1, 𝑢𝑗 → 𝑢 in 𝐿𝑝(𝛺𝛿 ;R𝑚) as 𝑗 → ∞ and
assume without loss of generality that sup𝑗 

𝑠𝑗
𝛿 (𝑢𝑗 ) < ∞. Then, according to Lemma 6.3 (𝑖𝑖𝑖) (cf. also Step 1), 𝑢 ∈ 𝑁1,𝑝,𝛿(𝛺)⟂ with

𝐷
𝑠𝑗
𝛿 𝑢𝑗 ⇀ ∇𝑢 in 𝐿𝑝(𝛺;R𝑚×𝑛) as 𝑗 → ∞. The desired liminf-inequality

1
𝛿 (𝑢) ≤ lim inf

𝑗→∞
 𝑠𝑗
𝛿 (𝑢𝑗 )

is straightforward, if we exploit the weak lower semicontinuity of 𝑣 ↦ ∫𝛺 𝑓 (𝑥,∇𝑣) 𝑑𝑥 as in the proof of Theorem 6.1, but now with
𝑠𝑗𝛿 varying with 𝑗.

Step 3: Recovery sequence. Let 𝑢 ∈ 𝑁1,𝑝,𝛿(𝛺)⟂ with 1
𝛿 (𝑢) < ∞ and take 𝑣 ∈ 𝑊 1,𝑝(R𝑛;R𝑚) with 𝑣 = 𝑢 on 𝛺. We define a sequence

(𝑢𝑗 )𝑗 ⊂ 𝐿𝑝(𝛺𝛿) by setting

𝑢𝑗 ∶= 𝑠𝑗
𝛿 𝑣 − 𝜋

𝑠𝑗
𝛿 (𝑠𝑗

𝛿 𝑣) ∈ 𝑁𝑠𝑗 ,𝑝,𝛿(𝛺;R𝑚)⟂.

By construction, it holds in view of (2.10) that, for every 𝑗,
𝑠𝑗 𝑠𝑗 𝑠𝑗
26

𝐷𝛿 𝑢𝑗 = 𝐷𝛿 (𝛿 𝑣) = ∇𝑣 = ∇𝑢 on 𝛺, (6.14)
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A

a

R

and Lemma 6.3 (𝑖) and (𝑖𝑖) imply

𝑢𝑗 → 𝑣 − 𝜋1𝛿 (𝑣) = 𝑢 in 𝐿𝑝(𝛺𝛿 ;R𝑚) as 𝑗 → ∞.

Observe that the identification of the limit function results from the fact that both 𝑢 and 𝑣 − 𝜋1𝛿 (𝑣) lie in 𝑁1,𝑝,𝛿(𝛺)⟂ and they have
the same gradient in 𝛺.

Altogether, we have shown that 𝑢𝑗 → 𝑢 in 𝐿𝑝(𝛺𝛿 ;R𝑚) and

 𝑠𝑗
𝛿 (𝑢𝑗 ) = ∫𝛺

𝑓 (𝑥,𝐷
𝑠𝑗
𝛿 𝑢𝑗 ) 𝑑𝑥 − ∫𝛺𝛿

𝐹 ⋅ 𝑢𝑗 𝑑𝑥 = ∫𝛺
𝑓 (𝑥,∇𝑢) 𝑑𝑥 − ∫𝛺𝛿

𝐹 ⋅ 𝑢𝑗 𝑑𝑥⟶ 1
𝛿 (𝑢)

as 𝑗 → ∞, which proves the stated 𝛤 -convergence. □

Remark 6.5. We point out that the statement of Theorem 6.4 does not require any growth bound on 𝑓 from above. This is of
particular relevance in settings with polyconvex integrands, which – motivated by applications in elasticity theory – are often chosen
to be extended-valued. In terms of the proof, the waiver of any upper bound on 𝑓 is possible by the specific construction of the
recovery sequence, whose nonlocal gradients are independent of 𝑗, see (6.14). ▵

Finally, we address what the previously shown convergence of the variational problems implies for the relation between local
and nonlocal differential equations subject to natural and Neumann-type boundary conditions.

Indeed, if the classical compatibility condition ∫𝛺 𝐹 𝑑𝑥 = 0 holds, then any minimizer 𝑢 ∈ 𝐿𝑝(𝛺𝛿 ;R𝑚) of 1
𝛿 , when restricted to

𝛺, also minimizes the functional

𝑣 ↦ ∫𝛺
𝑓 (𝑥,∇𝑣) 𝑑𝑥 − ∫𝛺

𝐹 ⋅ 𝑣 𝑑𝑥

over the full space 𝑊 1,𝑝(𝛺;R𝑚). In particular, if 𝑓 is continuously differentiable in its second argument with 𝑓 and 𝐷𝐴𝑓 satisfying
(6.3), then the minimizer 𝑢 weakly satisfies the Euler–Lagrange system with natural boundary conditions

{

−div(𝐷𝐴𝑓 (⋅,∇𝑢)) = 𝐹 in 𝛺,
𝐷𝐴𝑓 (⋅,∇𝑢) ⋅ 𝜈 = 0 on 𝜕𝛺,

(6.15)

where 𝜈 is an outward pointing unit normal to 𝜕𝛺. Therefore, Theorem 6.4 implies that the minimizers of  𝑠
𝛿 converge up to

subsequence in 𝐿𝑝(𝛺;R𝑚) to a weak solution of (6.15) as 𝑠 ↑ 1.
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