Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

A variational perspective on auxetic metamaterials of checkerboard-type

Titelangaben

Verfügbarkeit überprüfen

Düll, Wolf-Patrick ; Engl, Dominik ; Kreisbeck, Carolin:
A variational perspective on auxetic metamaterials of checkerboard-type.
In: Archive for rational mechanics and analysis. 248 (2024): 46. - 55 S.
ISSN 0003-9527 ; 1432-0673

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (1MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://link.springer.com/article/10.1007/s00205-0...

Kurzfassung/Abstract

The main result of this work is a homogenization theorem via variational convergence for elastic materials with stiff checkerboard-type heterogeneities under the assumptions of physical growth and non-self-interpenetration. While the obtained energy estimates are rather standard, determining the effective deformation behavior, or in other words, characterizing the weak Sobolev limits of deformation maps whose gradients are locally close to rotations on the stiff components, is the challenging part. To this end, we establish an asymptotic rigidity result, showing that, under suitable scaling assumptions, the attainable macroscopic deformations are affine conformal contractions. This identifies the composite as a mechanical metamaterial with a negative Poisson’s ratio. Our proof strategy is to tackle first an idealized model with full rigidity on the stiff tiles to acquire insight into the mechanics of the model and then transfer the findings and methodology to the model with diverging elastic constants. The latter requires, in particular, a new quantitative geometric rigidity estimate for non-connected squares touching each other at their vertices and a tailored Poincaré type inequality for checkerboard structures.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Deutsch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis
DOI / URN / ID:10.1007/s00205-024-01989-7
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:33694
Eingestellt am: 02. Okt 2024 13:59
Letzte Änderung: 07. Okt 2024 17:29
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33694/
AnalyticsGoogle Scholar