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Abstract

The main result of this work is a homogenization theorem via variational con-
vergence for elastic materials with stiff checkerboard-type heterogeneities under
the assumptions of physical growth and non-self-interpenetration. While the ob-
tained energy estimates are rather standard, determining the effective deformation
behavior, or in other words, characterizing the weak Sobolev limits of deformation
maps whose gradients are locally close to rotations on the stiff components, is the
challenging part. To this end, we establish an asymptotic rigidity result, showing
that, under suitable scaling assumptions, the attainable macroscopic deformations
are affine conformal contractions. This identifies the composite as a mechanical
metamaterial with a negative Poisson’s ratio. Our proof strategy is to tackle first an
idealized model with full rigidity on the stiff tiles to acquire insight into the me-
chanics of the model and then transfer the findings and methodology to the model
with diverging elastic constants. The latter requires, in particular, a new quantitative
geometric rigidity estimate for non-connected squares touching each other at their
vertices and a tailored Poincaré type inequality for checkerboard structures.

1. Introduction

When speaking of metamaterials, one usually refers to engineered and artifi-
cially fabricated materials tailored to show specific desirable properties that are
rare to find naturally. Among the many different types of metamaterials are elec-
trical, magnetic, acoustic, and mechanical. We focus here on the latter, specifically
on those characterized by a negative Poisson’s ratio, meaning a positive ratio of
transversal and axial strains, which are called auxetic. In contrast to standard ma-
terials, like a piece of rubber, they respond to stretching in uniaxial direction by
thickening in the direction orthogonal to the applied force. Among the special char-
acteristics of auxetics are enhanced shear moduli, increased fracture resistance, and
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higher shock absorption capacity, which renders them beneficial for numerous in-
dustrial applications. Even though the roots of auxetics are reported to date back
already to the 1920s [1], the topic started to attract increased attention in the mate-
rials science and engineering communities only decades later, when Lakes [2] was
the first to manufacture foams with negative Poisson’s ratio in 1987.

Several mechanisms have since been presented in the literature that give rise
to auxetic material behavior, for instance, re-entrant honeycomb or bow tie struc-
tures [3] (where also the term ‘auxetic’ from the ancient Greek word for ‘stretch-
able’ was coined), multiscale laminates [4], planar rhombi-slit kirigami [5,6], and
Kagome lattices [7,8]. Most relevant for this work is the pattern of rotating rigid
squares connected by hinges at the vertices, as introduced in [9] by Grima and
Evans, see Fig. 1.

Also other rigid building blocks, such as triangles [10,11] or rectangles [12–14],
have beenused by these (andother co-) authors to produce a negativePoisson’s ratio.
More recently, there are thrusts of combining several geometric arrangements at the
microscale to design state-of-the-art materials with unique characteristics [15,16].
For more on the subject, we refer to the review article [17] and the references
therein. Compared with the research activities in the mechanics disciplines, the
coverage of auxetic structures from the standpoint of mathematics seems rather
sporadic. The works by Borcea and Streinu, e.g., [18,19], approach the problem by
recoursing to algebraic geometry. They investigate what crystalline and artificial
structures give rise to auxetic behavior and devise design principles, based on their
earlier graph-theoretical papers on the deformation of periodic frameworks with
rigid edges [20].

This paper contributes to the rigorous mathematical theory of auxetic metama-
terials, approaching the problem from a new perspective, namely that of asymptotic
variational analysis. We study a class of composites in a two-dimensional setting
of nonlinear elasticity that show a small-scale pattern of stiff and soft tiles arranged
into a checkerboard structure as illustrated in Fig. 2b), cf. [21] by Kochmann and
Venturini. Working with a variational model (detailed in Sect. 1.1 below), the task
is to rigorously determine the effective material behavior and, in particular, charac-
terize the attainable macroscopic deformations along with their energetic cost. To
this end, we resort to homogenization via�-convergence (for a general introduction
to �-convergence, see [22,23]). Our main result (Theorem 1) is a homogenization
result that is non-standard compared to classical papers like [24,25] and the works

Fig. 1. Illustrations of the auxetic deformation behavior of checkerboard-type composites
with differently sized stiff squares (colored in gray)
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on high-contrast media [26–29]. Instead, it can be interpreted in the context of
asymptotic rigidity statements for other reinforcing elements like layers [30–32]
and fibers [33]. This means, generally speaking, that the models are governed by an
interesting interplay between the specific geometric pattern of the heterogeneities
and a strong contrast in the elasticity constants, which leads to global effects and
overall, to a strongly restrictedmacroscopicmaterial response. For the checkerboard
composites under consideration, we prove in a suitable scaling regime between the
stiffness and length scale parameters that the macroscopic deformations are given
by affine maps describing conformal contraction, confirming a negative Poisson’s
ratio. Since the identified effective behavior coincides with that of an idealized ver-
sion of themodel with fully rigid elasticity of the stiff components (Theorem 5), one
may also view our main theorem as part of a robustness analysis, which is signifi-
cant with a view to the practical applicability of these metamaterials. As a closely
related issue relevant for the manufacturing process, which is, however, beyond the
scope of this work, is a solid understanding of the sensitivity of imperfections and
perturbations in the geometry of the small-scale structures. Further interesting re-
search directions include the study ofmetamaterial with rotating triangle structures,
higher-dimensional settings, the optimal design of the stiff components, and other
contrast scaling regimes giving rise to a broader class of admissible macroscopic
deformations beyond globally affine ones.

1.1. Setup of the Problem

Let � ⊂ R
2 be a bounded Lipschitz domain that models the simplified refer-

ence configuration of a thin elastic body. Deformations of that body are described
by maps u : � → R

2, which - unless mentioned otherwise - are taken to lie
in W 1,p(�;R2) with p > 2, and are thus, in particular, continuous by Sobolev
embedding; note that some of our results also extend to p = 2. We generally re-
quire our deformations to be orientation preserving, meaning with positive Jacobi-
determinant almost everywhere, and forbid self-interpenetration of matter by im-
posing the Ciarlet–Nečas condition [34],

∫
�

| det∇u| dx ≤ |u(�)|, (CN)

which corresponds to injectivity of u a.e. in �; for more on the topic of global
invertibility of Sobolev maps, we refer, for instance, to the classical works [35,36]
or to [37–39] for some recent developments. With these assumptions, we introduce
the class of admissible deformations as

A = {u ∈ W 1,p(�;R2) : det∇u > 0 a.e. on � and u satisfies (CN)}. (1.1)

Next, we formalize the geometry of the material heterogeneities, arranged in a
checkerboard-like fashion.To this end, the periodicity cellY = (0, 1]2 is subdivided
into four tiles, precisely,

Y1 = (0, λ]2, Y2 = (0, λ] × (λ, 1], Y3 = (λ, 1]2, Y4 = (λ, 1] × (0, λ], (1.2)



46 Page 4 of 55 Arch. Rational Mech. Anal. (2024) 248:46

Fig. 2. a The partition of the unit cell Y into the four tiles Y1, . . . , Y4 as in (1.2) with
Ystiff = Y1 ∪Y3 colored in gray and Ysoft = Y2 ∪Y4 in white. b The reference configuration
� with its stiff components � ∩ εYstiff marked in gray

for a given parameter λ ∈ (0, 1), and we define

Ystiff = Y1 ∪ Y3 and Ysoft = Y2 ∪ Y4,

so that Y = Ystiff ∪Ysoft. Note that, without further mentioning, the sets Ystiff ,Ysoft,
Y1, . . . ,Y4 will also be identified throughout with its Y -periodic extensions. The
stiff and soft components of the elastic body forming a periodic pattern at length
scale ε > 0 are then described by the intersection of � with εYstiff and εYsoft,
respectively. For an illustration of the geometric setup, we refer to Fig. 2.

The material properties of the composite are modeled by the two energy elastic
densitiesWstiff,ε andWsoft. On the stiff parts, we takeWstiff,ε : R2×2 → [0,∞] for
ε > 0 as a continuous function such that

Wstiff,ε = 0 on SO(2) and
1

cεβ
dist p(F,SO(2)) ≤ Wstiff,ε(F)

if det F > 0,

Wstiff,ε(F) = ∞ if det F ≤ 0, (1.3)

with a constant c > 0 and a parameterβ > 0.While rotations do not cost any energy,
deviations from SO(2) are energetically penalized with diverging elastic constants
as ε tends to zero, i.e., the stiff material is asymptotically rigid. Qualitatively,
this means that the stiff components become stiffer and stiffer as the length scale
shrinks. The tuning parameter β controls the degree of increasing stiffness and will
be chosen later to be sufficiently large.

On the soft components, we consider a continuous function Wsoft : R2×2 →
[0,∞] that satisfies for p ≥ 2,

1

c
|F |p + 1

c
θ(det F) − c ≤ Wsoft(F) ≤ c|F |p + cθ(det F) + c if det F > 0,

Wsoft(F) = ∞ if det F ≤ 0, (1.4)

where c > 0 and θ : (0,∞) → [0,∞) is a convex function such that

θ(st) ≤ c(1 + θ(s))(1 + θ(t)) for all s, t ∈ (0,∞),
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cf. also [40, Equations (2.1), (2.2)]. These estimates on the soft energy density
together with the assumption that W qc

soft is polyconvex (see Theorem 1 below) en-
able relaxation results for functionals with physical growth conditions, see [40]
by Conti and Dolzmann. A relaxation step in this spirit necessarily occurs in our
�-convergence result.

Merging the modeling assumptions introduced above gives rise to a variational
problemwith the elastic energy functional (defined on deformationswith zeromean
value)

Iε : L p
0 (�;R2) → [0,∞], u �→

⎧⎨
⎩

∫
�

Wε

( x
ε
,∇u(x)

)
dx for u ∈ A,

∞ otherwise,
(1.5)

with the inhomogeneous energy density

Wε : R2 × R
2×2 → [0,∞], (y, F) �→ Wsoft(F)1Ysoft (y) + Wstiff,ε(F)1Ystiff (y).

(1.6)

Hence, the observed deformations of the composite with checkerboard structure at
scale ε, correspond to minimal energy states of Iε - up to accounting for external
forces, which we do not explicitly include here, as they can be handled via contin-
uous perturbations. In what follows, we focus on capturing the effective material
behavior through the convergence of minimizers in the limit of vanishing length
scale.

1.2. The Main Result

With this setup at hand, we can now state the main contribution of this work, the
following homogenization result by �-convergence for the elastic energies (Iε)ε
as ε → 0.

Theorem 1. (Homogenizationof checkerboard structures)Let� ⊂ R
2 beabounded

Lipschitz domain, p ≥ 2, β > 2p + 2, and let Iε for ε > 0 as in (1.5), (1.1), and
(1.6) with Wstiff,ε as in (1.3) and Wsoft as in (1.4) such that W qc

soft is polyconvex.
Then, the family of functionals (Iε)ε �-converges for ε → 0 with respect to the
strong L p(�;R2)-topology to

Ihom : L p
0 (�;R2) → [0,∞], u �→

{
|�|Whom(F) if ∇u = F ∈ K ,

∞ otherwise,
(1.7)

where

K := {λS + (1 − λ)R : R, S ∈ SO(2), Re1 · Se1 ≥ 0}
= {αQ : √|Ystiff | ≤ α ≤ 1, Q ∈ SO(2)} (1.8)

and the homogenized density is given for F ∈ K by

Whom(F) = 1

2
|Ysoft| min

R,S∈SO(2),λS+(1−λ)R=F,Re1·Se1≥0

(
W qc

soft(Se1|Re2) + W qc
soft(Re1|Se2)

)
.
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(1.9)

Moreover, any sequence (uε)ε ⊂ L p
0 (�;R2) with supε Iε(uε) < ∞ has a

subsequence that converges weakly in W 1,p(�;R2) to an affine function u : � →
R
2 with vanishing mean value and ∇u ∈ K.

This theorem shows rigorously that the effective behavior of materials with
high-contrast checkerboard structures, governed by the variational problem with
functional Ihom, is restricted to affine conformal contractions. Indeed, the macro-
scopically attainable deformations correspond exactly to the domain of the limit
energy Ihom, which comprises all affine functions with zero mean value and whose
gradients are suitable positive scalar multiples of rotation matrices. The latter im-
plies that the Poisson’s ratio of the composites under consideration is −1, which
reflects their auxetic nature, see Remark 3 b). A comparison inspired by classical
homogenization results like [24,25] reveals that the homogenized density Whom
coincides essentially (that is, up to maximal compressions) with the cell formula
associated to the related model where the stiff tiles are fully rigid; we refer to
Remark 5 for more details.

Further more, two comments about the technical hypotheses in the previous
theorem are in order.

Remark 1. a) Note that the statement of Theorem 1 is sensitive to the regularity
of the admissible functions and fails for p < 2. The intuition is that the material
can break up at the connecting joints between two stiff neighboring squares,
when the deformations, here W 1,p-functions, can have discontinuities in iso-
lated points, so that a large class of limit maps can be reached, cf. Proposition 7.
Interestingly, this observation about the critical role of the integrability param-
eter is in contrast to related homogenization results for materials with strict soft
inclusions [41,42] or layered materials [30,31], which are valid for any p > 1.

b) The condition β > 2p+ 2 on the tuning parameter emerges naturally from our
approach (see Sect. 1.3), but it is currently not clear whether this scaling regime
is optimal. Answering this question remains an interesting open problem. We
presume that there are regimes forwhich non-affine deformations are achievable
in the limit. Approximations of such deformations at finite length scale were
analyzed, for example, in the related rotation-square configuration with voids
of [43]. In the context of Kirigami metamaterials, the authors of [5,6] provide a
coarse-graining rule that describes the macroscopic deformation behavior with
the help of a partial differential equation depending on the local rotation of the
unit cell and the slit actuation angle.

1.3. Approach and Methodology

The stepping stone for our analysis is a solid understanding of the related model
with rigid elasticity on the stiff tiles, which is inspired by [9] and results formally
by replacing the density Wstiff,ε in (1.6) by

Wrig(F) =
{
0 for F ∈ SO(2),

∞ otherwise,
F ∈ R

2×2. (1.10)
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Due to this stricter assumption, the macroscopically attainable deformations are
easier to characterize, since the possible deformations even for structures at scale
ε > 0, that is, uε ∈ A with

∇uε ∈ SO(2) on � ∩ εYstiff , (1.11)

which by well-known rigidity results (e.g., [44]) is equivalent to ∇uε coinciding
with a single rotation on each connected component of εYstiff , are rather limited.
Indeed, each such uε can be characterized as the sum of a function that is piecewise
affine on the tiles with at most four different gradients, uniquely determined by two
rotations, and local modulations on each soft tile with a Sobolev function with zero
boundary values (Corollary 3). This follows from basic geometric considerations
that allow us to determine the rigid motions acting on the boundaries of the rigid
components, while accounting for orientation preservation. The next step of identi-
fying the weakW 1,p-limits of sequences (uε)ε is then standard (see Proposition 4)
and yields the affine deformations with gradients in the set K in (1.8) - so exactly
the finite-energy states of the homogenized functional (1.7).

Besides the insight into the case with fully rigid components, we wish to high-
light two technical ingredients that are substantial for the proof of Theorem 1.
They are both embedded in a general proof strategy of asymptotic rigidity results
(cf. [31–33] and also [45]) essential for expanding the observations on the asymp-
totic behavior of sequences (uε)ε ⊂ Awhen the exact differential inclusion (1.11)
is weakened to the approximate version

∫
�∩εYstiff

dist p(∇uε,SO(2)) ≤ Cεβ (1.12)

with a constant C > 0.
The first key tool is a quantitative rigidity estimate in the spirit of the seminal

work by Friesecke et al. [45] applicable to cross structures, as stated in Lemma 10;
by an (unscaled) cross structure E ′, we understand a non-connected open set con-
tained in Ystiff consisting of the four stiff neighboring squares of a single soft rectan-
gle. If one applies [45, Theorem 3.1] individually to a function u ∈ W 1,p(E ′;R2)

restricted to each of the connected components of E ′, this yields four potentially dif-
ferent rotationmatrices close to the gradient of u. Lemma 10 states that only two ro-
tations are in fact enough.We prove by careful geometric arguments in combination
with an approximate version of the non-interpenetration condition (see Lemma 9)
that the rotations on opposite squares can be chosen identical while preserving suit-
able control on the error terms. More precisely, the L p-error between the rotations
and the gradients of u is given terms of δ1/2 with δ = ‖ dist(∇u,SO(2))‖L p(E ′);
note that the square root is due to our technical approach and comes in through
Pythagoras’ theorem. For the scaling analysis associated with Lemma 10, we refer
to Remark 9.

The second tool is aPoincaré-type inequalitywith uniformconstants for checker-
board structures, which has - in contrast to Lemma 10 - a global character. Roughly
speaking, we show that a function u ∈ W 1,p(�;R2) with vanishing mean value
on the stiff parts � ∩ εYstiff and the property that the values of u in interior of



46 Page 8 of 55 Arch. Rational Mech. Anal. (2024) 248:46

� control u also in a boundary layer, then the L p-norm of u can be estimated by
‖∇u‖L p(�∩εYstiff ;R2) multiplied with a constant independent of ε; the precise state-
ment can be found in Lemma 12.Our proof is inspired by a classical extension result
in the literature. Based on [46] by Acerbi, Chiadò Piat, Dal Maso and Percivale,
we derive an approximate extension result tailored for our purposes, which then
allows us to mimic the usual indirect proof of Poincaré’s inequality. To handle the
technicalities around the joints, where the sets of stiff tiles does not have Lipschitz
boundary, we proceed in two steps. We first extend our functions partially from
the stiff to the soft parts by standard reflection arguments, leaving out small balls
around the corners, and then fill them via an extension according to [46].

1.4. Outline

The rest of this paper is organized as follows: Sect. 2 is concerned with the anal-
ysis of the auxiliary model with full rigid tiles. After establishing the deformation
behavior of the individual soft components on the local level in Sect. 2.1, we charac-
terize in Sect. 2.2 the set of attainable macroscopic deformations in terms of affine
conformal contractions. The corresponding homogenization result via variational
convergence, which gives rise to the effective energy Ihom as �-limit, is proven
in Sect. 2.3. We conclude this first part of the paper in Sect. 2.4 with a detailed
discussion of our various modeling assumptions, including the effects of requir-
ing orientation preservation, the Ciarlet–Nečas condition and p > 2. The core of
this work is Sect. 3, where we investigate the model with diverging elastic energy
contribution on the stiff parts as introduced in Sect. 1.1. We provide the technical
basis in Sect. 3.1 by proving the two technical key tools, a quantitative rigidity
estimate for cross structures and a Poincaré-type inequality for checkerboard struc-
tures. Section3.2 then covers the proof of the compactness statement in Theorem
1 and determines the possible effective deformations through the weak closure of
the admissible deformations of small-scale checkerboard structures. Finally, the
remaining parts of the proof of the main result Theorem 1 can be found in Sect. 3.3.

1.5. Notation

The standard unit vectors in R
2 are denoted by e1 and e2. For two vectors

a, b ∈ R
2, we write a · b for their scalar product. The one-dimensional unit sphere

S1 consists of all vectors inR2 with unit length. Fora ∈ R
2, leta⊥ := −a2e1+a1e2,

while for A ∈ R
2×2, we define A⊥ = (Ae2| − Ae1). We equip R

m×n for m, n ∈
{1, 2} with the standard Frobenius norm, that is, |A| = √

Tr(AT A) for A ∈ R
m×n

where AT is the transpose of A and Tr denotes the trace operator. We write Id for
the identity matrix in R

2×2 and SO(2) stands for the special orthogonal group of
matrices in R

2×2.
If U, V ⊂ R

2, then U + V := {u + v : u ∈ U, v ∈ V } describes their
Minkowski sum. The notation A � B for two sets A, B ⊂ R

2 means that A
is compactly contained in B. We refer to a non-empty, open, connected set as a
domain. Given x0 ∈ R

2 and R, r > 0, we set B(x0, R) = {x ∈ R
2 : |x − x0| < R}
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as the ball around x0 with radius R, and

A(x0, R, r) = {x ∈ R
2 : r < |x − x0| < R} (1.13)

as the annulus around x0 with outer radius R and inner radius r . We write | · | for
the Lebesgue measure and use 
(·) for the counting measure.

For an open set U ⊂ R
2 and 1 ≤ p ≤ ∞, we use the standard notation for

Lebesgue and Sobolev spaces L p(U ;Rm), W 1,p(U ;Rm) and W 1,p
0 (U ;Rm) with

vanishing boundary values in the sense of traces, and define L p
0 (U ;R2) := {u ∈

L p(U ;R2) : ∫
U u(x) dx = 0}. For functions f : R

2×2 → [0,∞], we briefly
write f (Ae1|Ae2) instead of f ((Ae1|Ae2)) for A = (Ae1|Ae2). The indicator
function 1U of a set U ⊂ R

2 is identical to 1 on U and vanishes everywhere else.
Furthermore, we define

f qc(F) := inf
ϕ∈W 1,∞

0 (D;R2)

−
∫
D

f (F + ∇ϕ) dx, (1.14)

where D ⊂ R
2 is an arbitrary bounded open set and −

∫
describes the mean integral,

as the quasiconvex envelope of f . We say that f is polyconvex if there exists a
convex and lower semicontinuous function g : R

2×2 × R → [0,∞] such that
f (F) = g(F, det F) for all F ∈ R

2×2.
Throughout the document, we useC > 0 for generic constantswhichmay differ

from term to term; if we want to highlight the dependence of certain quantities, we
include them in parentheses. Finally, families indexed with a continuous parameter
ε > 0 refer to any sequence (ε j ) j with ε j → 0 as j → ∞.

2. Analysis of the Model with Fully Rigid Tiles

2.1. Auxiliary Results

The next lemma identifies local restrictions on neighboring rotations of the
stiff parts in the checkerboard structure and shows that the boundary values of
a deformation of any single soft tile coincide with those of a piecewise affine
function. This lemma constitutes a useful technical tool for the analysis, both with
and without orientation preservation.While some of the affine boundary conditions
are inadmissible in the former case, see Corollary 3, they will be relevant later in
Proposition 6, when we discuss the assumptions of the model setup.

Lemma 2. Let E ⊂ R
2 be an open rectangle with two sides of length l parallel

to e1, two sides of length μl and ∂i E = �i for i = 1, . . . , 4 the linear pieces
of the boundary ∂E, numbered clockwise, starting in the lower left corner. If u ∈
W 1,p(E;R2) with p ≥ 2 is such that

u|�i = Ri x + bi with Ri ∈ SO(2) and bi ∈ R
2 for i = 1, . . . , 4, (2.1)

the following two statements hold:
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Fig. 3. Illustration of the boundary deformations u(∂E) for μ = 1

Fig. 4. Illustration of the boundary deformations u(∂E) for 0 < μ < 1

a) There exist matrices R, S ∈ SO(2) depending only on u|∂E as well as functions
F±,G± : (SO(2))2 × (0, 1) → SO(2) being independent of E and u such that

4⋃
i=1

Ri ⊂ {R, S, F±(R, S, μ),G±(R, S, μ)} ⊂ SO(2).

In particular, it holds that F±(R, S, 1) = ±R⊥, G±(R, S, 1) = ±S⊥.
b) There exist ϕ ∈ W 1,p

0 (E;R2) and a piecewise affine function v : E → R
2 with

at most two different gradients in the set

{(Se1|Re2), (F+(R, S, μ)e1|G−(R, S, μ)e2),

(F−(R, S, μ)e1|G+(R, S, μ)e2)} ⊂ R
2×2

such that

u = v + ϕ. (2.2)

Proof. Case 1: E is an open square.
After scaling and shifting, we may assume without loss of generality that E =

(0, 1)2 and u(0) = 0. Due to p ≥ 2, the trace of u is continuous on ∂E . For p > 2,
this is a direct consequence of the fact that W 1,p(�;R2) embeds into the Hölder

space C0,1− 2
p (�;R2). For p = 2, this follows from the fact that the boundary

values (2.1) satisfy the assertion (c) of Theorem 1.5.2.3 in [47] if and only if they
are continuous on ∂E . Because of (2.1), the continuity of u(∂E) and the fact that
triangles which correspond in their three side lengths are congruent, it follows that
u(∂E) has to be either

i) the boundary of a rhombus with side length 1 or
i i) a straight line of length 2 or
i i i) a hook with two arms of length 1 each or
iv) a straight line of length 1,
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cf. Fig. 3.
For i) and i i), we observe that R1 = R3 =: R and R2 = R4 =: S. Hence, the

affine map v : E → R
2 with ∇v = (Se1|Re2) and v(0) = 0 satisfies u(∂E) =

v(∂E).
The situations i i i) and iv) imply that

R4e1 = R1e2 and R3e2 = R2e1 (2.3)

or

R2e1 = −R1e2 and R3e2 = −R4e1. (2.4)

For (2.3), let R := R1, S := R2 and Enw = {x ∈ (0, 1)2 : x2 > x1},
Ese = {x ∈ (0, 1)2 : x2 < x1} be the open triangles that result from cutting E at
the diagonal. We define v : E → R

2 via v(0) = 0 and

∇v =
{

(Se1|Re2) in Enw,

(Re2|Se1) in Ese.
(2.5)

By construction, v is compatible along the diagonal, hence v ∈ W 1,∞(E;R2) and
v(∂E) = u(∂E).

We argue similarly for (2.4), setting R := R1, S := R4, Esw = {x ∈ (0, 1)2 :
x2 < 1 − x1} and Ene = {x ∈ (0, 1)2 : x2 > 1 − x1}. Defining a continuous
function v : E → R

2 by v(0) = 0 and

∇v =
{

(Se1|Re2) in Esw,

−(Re2|Se1) in Ene
(2.6)

yields a piecewise affine function with v(∂E) = u(∂E).
Hence, we obtain the statements of the lemma for μ = 1 by defining

F±(R, S, 1) = ±R⊥, (2.7)

G±(R, S, 1) = ±S⊥. (2.8)

Case 2: E is an open rectangle and 0 < μ < 1.
After scaling and shifting, we may assume without loss of generality that E =

(0, 1) × (0, μ) and that u(0) = 0. Because of p ≥ 2, the trace of u is again
continuous on ∂E . For the same reasons as above it follows that u(∂E) is either

i) the boundary of a parallelogram with side lengths 1 and μ or
i i) a straight line of length 1 + μ or
i i i) the union of the two sides below or above one diagonal of a parallelogram
from i) with the reflection of the two other sides on that diagonal,

cf. Fig. 4.
For i) and i i), we observe that R1 = R3 =: R and R2 = R4 =: S. Hence, the

affine map v : E → R
2 with ∇v = (Se1|Re2) and v(0) = 0 satisfies u(∂E) =

v(∂E).
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The situation i i i) implies that

R4e1 = F+(R1, R2, μ)e1 and R3e2 = G−(R1, R2, μ)e2, (2.9)

or

R2e1 = F−(R1, R4, μ)e1 and R3e2 = G+(R1, R4, μ)e2, (2.10)

where F±,G± are given by

F±(R, S, μ) = ±2μ + 2μ2 Se1 · Re2
1 + μ2 ± 2μ Se1 · Re2 R⊥ + 1 − μ2

1 + μ2 ± 2μ Se1 · Re2 S,

(2.11)

G±(R, S, μ) = ±2μ − 2 Se1 · Re2
1 + μ2 ∓ 2μ Se1 · Re2 S⊥ − 1 − μ2

1 + μ2 ∓ 2μ Se1 · Re2 R,

(2.12)

which can be directly computed by using the facts that the reflection Ruv of a
vector v across a line {λu : λ ∈ R} is determined by

Ruv = 2
v · u
u · u u − v

and that |Se1| = |Re2| = 1. We remark that the denominators in (2.11)–(2.12)
cannot be equal to 0 for 0 < μ < 1 and that in the case of μ = 1, (2.11)–(2.12)
coincide with (2.7)–(2.8) if Se1 · Re2 �= ∓1.

For (2.9), let R := R1, S := R2 and Enw = {x ∈ (0, 1) × (0, μ) : x2 > μx1},
Ese = {x ∈ (0, 1)2 : x2 < μx1} be the open triangles that result from cutting E at
the diagonal. We define v : E → R

2 via v(0) = 0 and

∇v =
{

(Se1|Re2) in Enw,

(F+(R, S, μ)e1|G−(R, S, μ)e2) in Ese.
(2.13)

By construction, v is compatible along the diagonal, hence v ∈ W 1,∞(E;R2), and
v(∂E) = u(∂E).

We argue similarly for (2.10), setting R := R1, S := R4, Esw = {x ∈ (0, 1) ×
(0, μ) : x2 < μ(1 − x1)} and Ene = {x ∈ (0, 1) × (0, μ) : x2 > μ(1 − x1)}.
Defining a continuous function v : E → R

2 by v(0) = 0 and

∇v =
{

(Se1|Re2) in Esw,

(F−(R, S, μ)e1|G+(R, S, μ)e2) in Ene
(2.14)

yields a piecewise affine function with v(∂E) = u(∂E). ��
The next result specializes the previous two lemmas to the case of orientation

and locally volume-preserving maps.

Corollary 3. (Decomposition on a single soft tile) Let E and u ∈ W 1,p(E;R2) be
as in Lemma 2.
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a) If det∇u > 0 a.e. in E, then there exist R, S ∈ SO(2) with det(Se1|Re2) =
Se1 · Re1 > 0, b ∈ R

2 and ϕ ∈ W 1,p
0 (E;R2) such that

u(x) = (Se1|Re2)x + b + ϕ(x) for a.e. x ∈ E . (2.15)

b) If additionally, det∇u = 1 a.e. in E, then there exists R ∈ SO(2), such that

u(x) = Rx + b + ϕ(x) for a.e. x ∈ E .

Proof. The statement a) follows from the observation that the situations i i i) and iv)

in the cases 1 and 2 in the proof of Lemma 2 can be ruled out since u is orientation
preserving. Indeed, assume to the contrary that there exists p as constructed in (2.5)
or (2.13). In these cases, the identity (2.2) and the Null-Lagrangian property of the
determinant yield the contradictions

0 <

∫
E
det∇u dx =

∫
E
det(∇u − ∇ϕ) dx

= 1

2
|E | det(Se1|Re2) + 1

2
|E | det(Re2|Se1) = 0

or

0 <

∫
E
det∇u dx =

∫
E
det(∇u − ∇ϕ) dx

= 1

2
|E | det(Se1|Re2) + 1

2
|E | det(F±(R, S, μ)e1|G∓(R, S, μ)e2)

= 1

2
|E | det(Se1|Re2) − 1

2
|E | det(Se1|Re2) = 0 ,

where the second to last equality follows by (2.7)–(2.8), (2.11)–(2.12) and basic
algebraic properties of the determinant. The cases (2.6) and (2.14) can be handled
analogously.

Theonly remainingpossible boundary values ofu are describedby the situations
i) and i i) in the proof of Lemma 2. Hence, there exist two rotations R, S ∈ SO(2)
and ϕ ∈ W 1,p

0 (E;R2), such that (2.15) is satisfied. Note that det(Se1|Re2) =
Se1 · Re1 and distinguish three cases: If det(Se1|Re2) > 0, then there is nothing
to prove; otherwise det(Se1|Re2) ≤ 0 (equality corresponds to the case i i)) and it
holds that

0 <

∫
E
det(∇u) dx =

∫
E
det(∇u − ∇ϕ) dx = |E | det(Se1|Re2) ≤ 0, (2.16)

which produces a contradiction.
b) In case det∇u = 1 a.e. in E , thenwe obtain analogously to (2.16) the identity

|E | =
∫
E
det(∇u) dx = |E |Re1 · Se1,

from which we conclude that Re1 is identical to Se1. The desired equality then
follows from (2.15). ��
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2.2. Macroscopic Deformation Behavior

In this section, we focus on maps uε ∈ A with ∇uε ∈ SO(2) on � ∩ εYstiff .
We prove via Corollary 3 that ∇uε can essentially only attain two different values
Sε, Rε ∈ SO(2) with Sεe1 · Rεe1 > 0 on � ∩ εYstiff , which suggests an affine limit
with gradient in the set K as in (1.8). The next proposition proves this statement
(on any compactly contained subset) and serves as the compactness result for the
homogenization in Theorem 5 later in this section.

Proposition 4. (Characterization of limit deformations) Let p ≥ 2.

a) If a sequence (uε)ε ⊂ A (recall (1.1)) satisfies

∇uε ∈ SO(2) a.e. in � ∩ εYstiff (2.17)

and uε ⇀ u in W 1,p(�;R2), then u is affine with

∇u = F ∈ K := {λS + (1 − λ)R : R, S ∈ SO(2), Re1 · Se1 ≥ 0}.
b) For every affine function u : � → R

2 with ∇u ∈ K there exists a sequence of
piecewise affine functions (uε)ε ⊂ A satisfying (2.17) and

∫
�
uε dx = ∫

�
u dx

such that uε ⇀ u in W 1,p(�;R2).

Proof. a)Step 1: Local–global rigidity effects.First,we prove that the set of rotation
matrices which emerge from Reshetnyak’s rigidity theorem on all the connected
components of � ∩ εYstiff has at most two different elements.

Let �′ � �, set

J ′
ε = {k ∈ Z

2 : �′ ∩ ε(k + Y ) �= ∅}, (2.18)

and recall the partition of Y into soft and stiff parts (1.2). Then, it holds that �′ ⊂⋃
k∈J ′

ε
ε(k + Y ) ⊂ � for ε sufficiently small. By Reshetnyak’s rigidity theorem,

we conclude that for each k ∈ Jε there exist rotations Skε , Rk
ε ∈ SO(2) such that

∇uε = Skε on ε(k + Y1) and ∇uε = Rk
ε on ε(k + Y3), respectively. Applying

Corollary 3a) on each rectangle ε(k + Y2) and ε(k + Y4) yields that Skε = Slε
and Rk

ε = Rl
ε for all k, l ∈ J ′

ε. Thus, ∇uε attains at most two different values,
say Sε ∈ SO(2) on �′ ∩ ε(k + Y1) and Rε ∈ SO(2) on �′ ∩ ε(k + Y3) with
Rεe1 · Sεe1 > 0 for all k ∈ Z

2.
Step 2: Characterization of the weak limit. In light of Step 1 and (2.15), we can

now write uε|�′ in the form

uε = vε + ϕε on �′, (2.19)

where vε : R2 → R
2 is a εY -periodic continuous and piecewise affine function

with gradients

∇vε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sε on εY1,

Rε on εY3,

(Sεe1|Rεe2) on εY2,

(Rεe1|Sεe2) on εY4,

(2.20)
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and ϕε ∈ W 1,p(�′;R2) with ϕε = 0 on �′ ∩ εYstiff .
In the following, we show that

∇ϕε ⇀ 0 in L p(�′;R2×2). (2.21)

We first observe that (∇ϕε)ε is bounded in L p(�′;R2×2) since (uε)ε is weakly
convergent in W 1,p(�;R2) and |∇vε| = √

2 for every ε > 0 and a.e. on �′. Since
piecewise constant functions on a grid are dense in Lq(�′;R2×2) with 1

p + 1
q = 1,

it suffices to test the weak convergence with characteristic functions of squares.
Hence, we set for an arbitrary open square Q ⊂ �′ the set Qε := ⋃

k∈I ∂Q
ε

ε(k +
Ysoft) with I ∂Q

ε = {k ∈ Z
2 : ∂Q ∩ ε(k + Ysoft) �= ∅}, and obtain with the help of

the Gauss-Green theorem and Hölder’s inequality that
∣∣∣
∫
Q

∇ϕε dx
∣∣∣ ≤

∣∣∣
∫
Qε∩Q

∇ϕε dx
∣∣∣ ≤ ‖∇ϕε‖L p(�′)|Qε|1−

1
p ≤ C‖∇ϕε‖L p(�′)ε

1− 1
p .

In the last line, we used the fact that #I ∂Q
ε ≤ C 1

ε
for a constant C > 0 independent

of ε, and |ε(k +Ysoft)| = 2λ(1−λ)ε2. This proves the desired convergence (2.21).
We now address the the weak convergence of (∇vε)ε. First, we find R, S ∈

SO(2) and (non-relabeled) subsequences of (Sε)ε and (Rε)ε such that Sε → S and
Rε → R as ε → 0; the limits then satisfy Re1 · Se1 ≥ 0 since Rεe1 · Sεe1 > 0 for
all ε. We now show that

∇vε ⇀ λS + (1 − λ)R in L p(�;R2×2). (2.22)

To see this, we define for ε the auxiliary functions wε(x) = εw( x
ε
) for x ∈ R

2,
where w : R

2 → R
2 is continuous and piecewise affine with the Y -periodic

arrangement of gradients

∇w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S on Y1,

R on Y3,

(Se1|Re2) on Y2,

(Re1|Se2) on Y4.

(2.23)

It follows with the help of the Riemann–Lebesgue lemma that

∇wε ⇀

∫
Y

∇w dx = λ2S + (1 − λ)2R + λ(1 − λ)(S + R) = λS + (1 − λ)R

(2.24)

in L p(�;R2×2). Moreover, it holds for all sufficiently small ε that

‖∇vε − ∇wε‖L p(�′;R2×2) ≤ C(|Rε − R| + |Sε − S|) (2.25)

for a constant C > 0 independent of ε and �′. Combining (2.24) with (2.25) then
produces (2.22).

In view of (2.19), we then obtain that

∇u = λS + (1 − λ)R a.e. on �′, (2.26)
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by the uniqueness of weak limits. The arbitrariness of �′ � � implies that (2.26)
is true on all of �.

b) For the proof of the approximation result we use an explicit construction of
continuous and piecewise affine functions, ensuring first the orientation preserva-
tion and (2.17). Let u : � → R

2 be affine such that

∇u = λS + (1 − λ)R

with S, R ∈ SO(2) satisfying Re1 · Se1 ≥ 0. If the latter is an equality, then we
choose a sequence (Ŝε)ε ⊂ SO(2) such that Re1 · Ŝεe1 > 0 and Ŝε → S as ε → 0.
We then define the continuous and piecewise affine approximating sequence (uε)ε
as

uε(x) = vε(x) + −
∫

�

u(y) − vε(y) dy, x ∈ R
2 (2.27)

where vε : R2 → R
2 is chosen as in (2.20) with{
Rε = R and Sε = Ŝε if Re1 · Sεe1 = 0

Rε = R and Sε = S if Re1 · Sεe1 > 0
(2.28)

By design, the sequence (uε)ε has the same mean value as u, satisfies (2.17), and
converges to u inW 1,p(�;R2) due to (2.22). It remains to prove that this sequence
also satisfies the Ciarlet–Nečas condition on � so that (uε)ε ⊂ A, cf. (1.1). Since
each uε fulfills det∇uε > 0 a.e. in � this task is equivalent to establishing the
injectivity of uε, see e.g., [48, Proposition 4.2]. As uε and vε differ only by a global
translation, it suffices to show that vε is injective. This can be seen directly by
considering the explicit construction

vε(εk + x) = dε + ε(λSε + (1 − λ)Rε)k

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sεx if x ∈ εY1,

Rεx + ελ(Sε − Rε)(e1 + e2) if x ∈ εY3,

(Sεe1|Rεe2)x + ελ(Sε − Rε)e2 if x ∈ εY2,

(Rεe1|Sεe2)x + ελ(Sε − Rε)e1 if x ∈ εY4,

for a suitable global translation dε ∈ R
2, and that λSε + (1 − λ)Rε, (Sεe1|Rεe2),

(Rεe1|Sεe2) have positive determinants, since Sεe1 · Rεe1 > 0 and

det(λSε + (1 − λ)Rε) = λ2 + (1 − λ)2 + 2λ(1 − λ)Sεe1 · Rεe1
= |Ystiff | + |Ysoft|Sεe1 · Rεe1 > |Ystiff |.

��
Remark 2. The proof of Proposition 4 reveals two noteworthy aspects.

a) Step 1 shows that at most two rotations appear periodically on � ∩ εYstiff . This
observation is tied to the specific geometric distribution of soft and stiff parts
of the unit cell. The same phenomenon is absent, for example, in the case of
Kagome-lattices [7,8].
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b) Step 2 and the proof of b) underscore that the material exhibits auxetic defor-
mation behavior not only in the limit ε → 0, but also at the level of finite,
non-vanishing length scale ε > 0.

Remark 3. (Discussion of K )

a) In Proposition 4, we established that weak limits of sequences inA that satisfy
(2.17) are characterized by affine functions with gradient in K defined as in
(1.8). In what follows, we shall prove the second identity in this equation. We
first observe that

SO(2) ⊂ K ⊂ λSO(2) + (1 − λ)SO(2) ⊂
⋃

μ∈[0,1]
μSO(2) + (1 − μ)SO(2)

= {F ∈ R
2×2 : |Fe1| ≤ 1, Fe2 = (Fe1)

⊥} = SO(2)c,

which shows that every F ∈ K is a conformal contraction. Furthermore, the
set can be simplified to

K = {αQ : |Ystiff | ≤ α2 ≤ 1, Q ∈ SO(2)},
since for every R, S ∈ SO(2) with Se1 · Re1 ≥ 0 it holds that

det(λS + (1 − λ)R) = |Ystiff | + |Ysoft|Se1 · Re1 ≥ |Ystiff |. (2.29)

b) The Poisson’s ratio ν corresponding to every non-trivial affine deformationwith
gradient αQ for

√|Ystiff | ≤ α < 1 and Q ∈ SO(2) satisfies

ν = −α − 1

α − 1
= −1.

This is a confirmation of the calculations in [9,21] via a variational perspective.

2.3. Homogenization

Now that the set of admissible limit deformations in the fully rigid setting is
characterized, we are in the position to prove a corresponding�-convergence result.
Here, we consider energy functionals of integral type with integrandWε as in (1.6)
with Wsoft as in (1.4) and Wstiff,ε replaced by (1.10). Note that in this scenario Wε

does, in fact, not depend on ε, which is why we write W instead of Wε throughout
this section.

Theorem 5. (Homogenization of rigid checkerboard structures) Let � ⊂ R
2 be

a bounded Lipschitz domain, p ≥ 2, and let Iε for ε > 0 be as in (1.5), (1.1),
and (1.6) with Wstiff,ε replaced by (1.10) and Wsoft as in (1.4) such that W qc

soft is
polyconvex. Then, the family of functionals (Iε)ε �-converges for ε → 0 with
respect to the strong L p(�;R2)-topology to Ihom as in (1.7)–(1.9).

Moreover, any sequence (uε)ε ⊂ L p
0 (�;R2) with supε Iε(uε) < ∞ has a

subsequence that converges weakly in W 1,p(�;R2) to some affine function u :
� → R

2 with vanishing mean value and ∇u ∈ K, cf. (1.8).
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Proof. Step 1: The lower bound. Let (uε)ε ⊂ L p
0 (�;R2) be strongly convergent

with limit u ∈ L p
0 (�;R2) and

lim
ε→0

Iε(uε) = lim inf
ε→0

Iε(uε) < ∞.

In particular, it holds that (uε)ε ⊂ A, the sequence satisfies (2.17), and has a (non-
relabeled) subsequence with uε ⇀ u in W 1,p(�;R2) for some u ∈ W 1,p(�;R2)

due to (1.4) and the specific choice (1.10) for Wrig. In view of Proposition 4a), we
find that u is affine with ∇u = F ∈ K .

To show the liminf-inequality, let �′ � � be an arbitrary subset and let ε

be sufficiently small. Exploiting the non-negativity of Wsoft, the splitting (2.19)
together with (2.20), and the fact that W qc is W 1,p-quasiconvex as a polyconvex
function (see [49, Lemma 2.5]) then produce

∫
�

W ( x
ε
,∇uε) dx ≥

∑
k∈J ′

ε

∫
ε(k+Y2)

Wsoft
(
(Sεe1|Rεe2) + ∇ϕε

)
dx

+
∫

ε(k+Y4)
Wsoft

(
(Rεe1|Sεe2) + ∇ϕε

)
dx

≥
∑
k∈J ′

ε

∫
ε(k+Y2)

W qc
soft

(
(Sεe1|Rεe2) + ∇ϕε

)
dx

+
∫

ε(k+Y4)
W qc

soft

(
(Rεe1|Sεe2) + ∇ϕε

)
dx

≥
∑
k∈J ′

ε

λ(1 − λ)ε2
(
W qc

soft(Sεe1|Rεe2) + W qc
soft(Rεe1|Sεe2)

)

≥ 1

2
|Ysoft||�′|(W qc

soft(Sεe1|Rεe2) + W qc
soft(Rεe1|Sεe2)

)
,

where J ′
ε is taken as in (2.18); recall also that ϕε ∈ W 1,p

0 (ε(k + Yi );R2) for
i ∈ {2, 4} and every k ∈ J ′

ε.
Now, let S, R ∈ SO(2) be the limits of (Sε)ε and (Rε)ε (up to a subsequence) as

in the proof of Proposition 4 a), respectively. SinceW qc is polyconvex and therefore
lower semicontinuous by definition, we may pass to the limit ε → 0 and obtain

lim inf
ε→0

Iε(uε) ≥ 1

2
|Ysoft||�′|(W qc

soft(Se1|Re2) + W qc
soft(Re1|Se2)

) ≥ |�′|Whom(F).

Upon taking the supremum over all compactly contained �′ � �, we obtain the
desired lower bound.

Step 2: The upper bound. The idea is to use the approximating sequence of
Proposition 4b) and augment it with a suitable perturbation on the softer part to
enforce optimal energy. Preserving orientation during this construction requires a
subtle construction due to Conti and Dolzmann [40].

To be precise, let u be affine with ∇u = F ∈ K and choose the energetically
optimal R, S ∈ SO(2) with Re1 · Se1 ≥ 0 such that F = λS + (1 − λ)R, and for
ε > 0 let uε : R2 → R

2 as in (2.27), see also (2.28) and (2.20). For any ε and
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k ∈ R
2, let (ûkε, j ) j ⊂ W 1,p(ε(k+Y2);R2) be the orientation preserving sequences

as in [40, Theorem 2.1] such that

ûkε, j ⇀ uε in W 1,p(ε(k + Y2);R2) as j → ∞, and

ûkε, j = uε on ∂(εk + εY2),

as well as

lim sup
j→∞

∫
ε(k+Y2)

Wsoft(∇ûkε, j ) dx ≤
∫

ε(k+Y2)
W qc

soft(∇uε) dx . (2.30)

Analogously, we introduce (ǔkε, j ) j ⊂ W 1,p(εk + εY4;R2).

Let �̃ ⊂ R
2 an open set with � � �̃, and let J̃ε = {k ∈ R

2 : ε(k + Y ) ⊂ �̃}.
For sufficiently small ε > 0, it then holds that

� ⊂
⋃
k∈ J̃ε

ε(k + Y ) ⊂ �̃, (2.31)

and we define for j ∈ N the functions

uε, j =
∑
k∈ J̃ε

ûkε, j1ε(k+Y2) + ǔkε, j1ε(k+Y4) + uε1ε(k+Y1∪Y3) on �̃.

Each uε, j is, by design, orientation preserving, and uε, j ⇀ uε in W 1,p(�;R2).
Moreover, every uε, j satisfies the Ciarlet–Nečas condition (CN) on every subset of
R
2 since uε ∈ A and the perturbations ûkε, j , ǔ

k
ε, j have a positive determinant and

coincide with uε on the boundary of the soft parts. In light of [35, Theorem 1], the
functions uε, j are globally injective and thus satisfy (CN) on every subset of R2,
cf. [48, Proposition 4.2].

Now, combining (2.31) with the non-negativity of Wsoft, Wrig = 0 on SO(2),
with (2.30) produces the energy estimate

lim sup
j→∞

∫
�

W (∇uε, j ) dx ≤ lim sup
j→∞

∑
k∈ J̃ε

∫
ε(k+Ysoft)

Wsoft(∇uε, j ) dx

=
∑
k∈ J̃ε

lim sup
j→∞

∫
ε(k+Ysoft)

Wsoft(∇uε, j ) dx

≤
∑
k∈ J̃ε

∫
ε(k+Ysoft)

W qc
soft(∇uε) dx

= λ(1 − λ)
∑
k∈ J̃ε

ε2
(
W qc

soft(Sεe1|Rεe2) + W qc
soft(Rεe1|Sεe2)

)

and hence

lim sup
ε→0

lim sup
j→∞

∫
�

W (∇uε, j ) dx ≤ λ(1 − λ)|�̃|Whom(F).
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Finally, we exploit that this estimate holds for arbitrary �̃ � �, and we use a
diagonalization argument to select a diagonal sequence (ūε)ε with ūε = uε, j (ε)

such that

lim sup
ε→0

∫
�

W (∇ūε) dx ≤ λ(1 − λ)|�|Whom(∇u)

and ūε ⇀ u in W 1,p(�;R2). Note that the uniform bounds (with respect to the
index parameters) of uε, j are obtained via the coercivity ofWsoft as in (1.4) and the
triviality of Wrig defined in (1.10). ��
Remark 4. (Properties of Whom)

a) The representation of F ∈ K into F = λS + (1 − λ)R for R, S ∈ SO(2) with
Re1 · Se1 ≥ 0 is not unique. A direct calculation based on the intersection of
two circles with radii λ and 1 − λ shows that

Se1 = 1

2λ|Fe1|2
(
(|Fe1|2 + 2λ − 1)Fe1

±
√
4λ2|Fe1|2 − (|Fe1|2 + 2λ − 1)2Fe2

)

and Re1 = 1
1−λ

(Fe1 − λSe1).
In fact, there exist exactly two choices for R and S if |Fe1| < 1, and the represen-
tation is unique if |Fe1| = 1. For λ = 1

2 , this formula reduces to

Se1 = Fe1 ±
√
1 − |Fe1|2
|Fe1| Fe2 and Re1 = Fe1 ∓

√
1 − |Fe1|2
|Fe1| Fe2. (2.32)

b) Note that if Wsoft is frame-indifferent or isotropic, i.e., Wsoft(QF) = Wsoft(F) or
Wsoft(FQ) = Wsoft(F) for all F ∈ R

2×2 and Q ∈ SO(2), then it is immediate
that the quasiconvex envelope W qc

soft (cf. (1.14)) is frame-indifferent or isotropic as
well.
In case Wsoft has one of these two properties then the limit density simplifies to

Whom(F) = Whom(|Fe1| Id)
for F ∈ K . Moreover, if Wsoft is both frame-indifferent and isotropic, then

Whom(F) = |Ysoft| min
R,S∈SO(2),λS+(1−λ)R=|Fe1| Id,Re1·Se1≥0

W qc
soft(Se1|Re2),

since (Re1|Se2) = R− π
2
(Se1|Re2)R π

2
, where Rθ ∈ SO(2) describes a rotation

matrix by the angle θ ∈ R. The expression on the right-hand side reduces even
further in the case λ = 1

2 , where we obtain the explicit formula

Whom(F) = |Ysoft|W qc
soft

((|Fe1| +
√
1 − |Fe1|2

)
Id

)

with the help of (2.32).
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Remark 5. (Comparisonwith cell formula)Homogenization for integral-type func-
tionals commonly gives rise to homogenized integrands that are defined by a (multi-
)cell formula [24,25]. In this remark, we explicitly compute the (multi-)cell formula
corresponding to W and compare the result with Whom as in (1.9).

In the following, we consider the density

Wcell(F) = inf
ψ∈W 1,p

# (Y ;R2)

∫
Y
W (y, F + ∇ψ) dy for F ∈ R

2×2 (2.33)

taken from [25, Equation (1.7)], and prove that

Wcell =
{
Whom on K \ √|Ystiff |SO(2),

∞ otherwise.
(2.34)

We shall point out that Theorem 5 also holds if the Ciarlet–Nečas condition is
dropped, see Remark 6 a) later on. The identity (2.34) shows, in particular, that
the two densities Wcell and Whom coincide on K \ √|Ystiff |SO(2), but differ on√|Ystiff |SO(2). This observation stands in contrast to other homogenization results
in the context of asymptotic rigidity, see [30, Sect. 6] and [31, Remark 5.5], where
the homogenized density and the cell formula coincide everywhere.

To prove (2.34), let F ∈ R
2×2 such that Wcell(F) < ∞, which implies that

there exist ψ ∈ W 1,p
# (Y ;R2) and S, R ∈ SO(2) such that

F + ∇ψ = S on Y1 and F + ∇ψ = R on Y3.

By exploiting the periodicity of the boundary values ofψ , we can apply Corollary 3
a) to u(x) = Fx + ψ(x) for x ∈ Y2, which produces

F + ∇ψ = (Se1|Re2) + ∇ϕ2 on Y2

with ϕ2 ∈ W 1,p
0 (Y2;R2), and Se1 · Re1 > 0. Similarly, we find ϕ4 ∈ W 1,p

0 (Y4;R2)

such that F + ∇ψ = (Re1|Se2) + ∇ϕ4 on Y4.
By choosing ψ̂ = ψ − ϕ2 − ϕ4 ∈ W 1,p

# (�;R2), we obtain that

F + ∇ψ̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S on Y1,

R on Y3,

(Se1|Re2) on Y2,

(Re1|Se2) on Y4.

Then the periodicity of ψ̂ yields that

λFe1 =
∫
Y1∪Y4

Fe1 + ∂1ψ̂ dx = λ2Se1 + λ(1 − λ)Re1,

and hence, Fe1 = λSe1 + (1 − λ)Re1. Similarly, one can show that Fe2 =
λSe2+(1−λ)Re2, which implies that F ∈ K\√|Ystiff |SO(2) since Se1 · Re1 > 0.

It remains to compare the values of the two functions in (2.33) and (2.34) for
F ∈ K\√|Ystiff |SO(2). Indeed, let F = λS + (1 − λ)R for S, R ∈ SO(2) with
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Se1 ·Re1 > 0 andWhom(F) = W qc
soft(Se1|Re2)+W qc

soft(Re1|Se2), then the previous
calculations show that

Wcell(F) = inf
ψ∈W 1,p

# (Y ;R2)

∫
Ysoft

Wsoft(F + ∇ψ) dx

= |Y2| inf
ϕ∈W 1,p

0 (Y2;R2)

−
∫
Y2

Wsoft
(
(Se1|Re2) + ∇ϕ

)
dx

+ |Y4| inf
ϕ∈W 1,p

0 (Y4;R2)

−
∫
Y4

Wsoft
(
(Re1|Se2) + ∇ϕ

)
dx

= 1

2
|Ysoft|

(
W qc

soft(Se1|Re2) + W qc
soft(Re1|Se2)

) = Whom(F).

This concludes the proof of (2.34). The results presented above dot not change if
Wcell is replaced by the multi-cell formula

Wmulti−cell(F) := inf
k∈N inf

ψ∈W 1,p
# (kY ;R2)

−
∫
kY

Wε(F + ∇ψ) dx, F ∈ R
2×2,

cf. [25, Equation (2.7)].

2.4. Discussion of the Assumptions

In this chapter, we present a critical discussion of the necessity of several model
assumptions made in Sect. 2. First, we address the set of admissible functions A,
cf. (1.1), which consists of all Sobolev functions satisfying theCiarlet–Nečas condi-
tion (CN) and orientation preservation. While the macroscopic deformation behav-
ior stays intact when dropping either of the two assumptions, see Remark 6 a) and
b), the material can undergo infinite compression if both conditions are dropped,
see Proposition 6. Second, we prove that the elastic material becomes much more
flexible in the case p < 2 due to the occurrence of microfractures at the hinges.
This section is then concluded with two final remarks about the geometric setup of
the model: the porous case and the case of rigid rectangles.

Remark 6. (Orientation preservation and Ciarlet–Nečas)

a) Theorem 5 and Proposition 4 remain true if the Ciarlet–Nečas condition (CN)
on � in the definition of A, see (1.1), is dropped. Indeed, the compactness
and lower bound do not require non-interpenetration of matter at all, while the
recovery sequences sequence designed in Proposition 4 b) and in Step 2 of the
proof of Theorem 5 satisfy this constraint automatically.

b) For p > 2 we shall also point out that Proposition 4 is true if the orientation
preservation det∇u > 0 a.e. in � is dropped instead of the Ciarlet-Nečas
condition (3.21) on �. In fact, we merely need to replace Corollary 3 by a
variant that also considers the full neighboring stiff squares, see Proposition 10
later in Sect. 3. The result essentially stays the same with the minor adjustment,
that the rotations S, R ∈ SO(2) in Corollary 3 a) satisfy Se1 · Re1 ≥ 0 instead
of Se1 · Re1 > 0.
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Fig. 5. Possible configurations of rotation matrices arranged around a square for λ = 1
2

c) Exchanging the constraint of orientation preservation det∇u > 0 a.e. in � in
the definitions of A and Wsoft, cf. (1.1) and (1.4), by incompressibility, that is,

det∇u = 1 a.e. in �,

results in a fully rigid limit set and a trivial �-limit. Precisely, the energy se-
quence (Iε)ε �-converges with respect to the strong topology in L p

0 (�;R2)

to

Ihom : L p
0 (�;R2) → [0,∞], u �→

{
0 if ∇u = R ∈ SO(2),

∞ otherwise.

This is a direct consequence of Corollary 3 b) and the proof of Proposition
4 a). In fact, for any sequence (uε)ε of bounded energy there is R ∈ SO(2)
such that ∇uε ⇀ λR + (1 − λ)R = R. As for the energetic adjustment of
the approximating sequence in Proposition 4 b), we invoke [40, Theorem 2.4]
instead of Theorem [40, Theorem 2.1].

As discussed in Remark 6 a) and b), the macroscopic deformation behavior
(see Proposition 4) still holds true if either the Ciarlet-Nečas condition (CN) or the
orientation preservation is dropped. We shall now discuss the scenario where all
functions inW 1,p(�;R2) are admissible. In this setting, the set of admissible limit
deformations can become larger, even allowing for infinite conformal compression,
as the following result proves:

Proposition 6. Let λ = 1
2 and p ≥ 2.

a) If (uε)ε ⊂ W 1,p(�;R2) converges weakly in W 1,p(�;R2) to some u ∈
W 1,p(�;R2), and satisfies the inhomogeneous constraint (2.17), then u is affine
with

∇u ∈ λSO(2) + (1 − λ)SO(2)

= {αQ : 0 = |Ystiff | − |Ysoft| ≤ α ≤ 1, Q ∈ SO(2)}. (2.35)

b) For every affine u : � → R
2 with gradient in λSO(2) + (1 − λ)SO(2)

there exists a sequence of piecewise affine functions (uε)ε ⊂ W 1,p(�;R2)

satisfying (2.17) and
∫
�
uε dx = ∫

�
u dx such that uε ⇀ u in W 1,p(�;R2).
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Proof. a) Let �′ � � be arbitrary. For the characterization of limit deformations,
one needs to understand the large scale compatibilities between the basic building
blocks resulting from the proof of Lemma 2. The latter can be classified in three
classes:

1 S → R → S → R,

2 R⊥ → R → S → −S⊥,

3 S → R → −R⊥ → S⊥,

see Fig. 5 (rotations listed in clockwise direction, starting at the bottom).
Hence, we have that for any ε(k + Y2) and ε(k + Y4) with k ∈ J ′

ε (see (2.18)),
that ∇uε restricted to ε(k + Y ) fits in one of the three scenarios described above,
where [k + Y2 : i] means that the rotations on neighboring squares of ε(k + Y2)
behave like i for i ∈ {1, 2, 3}, and analogously for [k + Y4 : i] on ε(k + Y4).
In the following, we use the notation Skε , Rk

ε for the rotation matrices satisfying
∇uε = Rk

ε on ε(k + Y3) and ∇uε = Skε on ε(k + Y1), respectively.

• Class I: [k + Y2 : 1] & [k + Y4 : 1]. In this case, Skε = Sk+e1
ε = Sk+e2

ε and
Rk

ε = Rk−e1
ε = Rk−e2

ε .
• Class II: [k + Y2 : 1] & [k + Y4 : 2], [k + Y2 : 2] & [k + Y4 : 1], [k + Y2 : 3] &

[k+Y4 : 1], [k+Y2 : 1] & [k+Y4 : 3], [k+Y2 : 2] & [k+Y4 : 3], [k+Y2 : 3]
& [k + Y4 : 2].

In the following, we provide a detailed explanation of the first of the above-
mentioned cases. All other scenarios can be handled analogously. We assume that
[k + Y2 : 1] & [k + Y4 : 2], i.e.,

Rk−e2
ε = (Skε )⊥ and Sk+e1

ε = −(Rk
ε )

⊥, (2.36)

and perform a case study. Suppose first that [k−e2 +Y2 : 1], then the first equation
in (2.36) produces

Sk−e2
ε = Skε = Sk+e2

ε and Rk−(1,1)
ε = Rk−e2

ε = (Skε )⊥. (2.37)

If [k − e1 + Y4 : 1], we derive from (2.36) and (2.37) the equations

(Skε )⊥ = Rk
ε = Rk−e1

ε = Rk−(1,1)
ε = Rk−e2

ε and (−Rk
ε )

⊥ = Skε = Sk+e2
ε = Sk−e2

ε .

(2.38)

In the case [k − e1 + Y4 : 2] the identities in (2.38) also hold true. In these two
cases, we obtain the class I case [k + Y2 : 1] & [k + Y4 : 1] with Rk

ε = (Skε )⊥. If
[k − e1 + Y4 : 3], then (2.37) yields that

Skε = (Rk−(1,1)
ε )⊥ = ((Skε )⊥)⊥ = −Skε ,

which is a contradiction. Suppose, secondly, that [k − e2 + Y2 : 2]. Then (2.37)
generates the next contradiction,

Skε = (Rk−(1,1)
ε )⊥ = ((Skε )⊥)⊥ = −S.
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Finally, assuming that [k − e2 + Y2 : 3], it holds that
Rk−(1,1)

ε = (Skε )⊥ and Sk−e2
ε = −(Rk−e2

ε )⊥,

which we combine with (2.36) to produce (2.38) again, since [k − e1 + Y2 : 1] is
automatically satisfied.
All the other scenarios mentioned above can be handled analogously and reduced
to the special case of class I with one of the two additional relations Skε = (Rk

ε )
⊥

or Rk
ε = (Skε )⊥.

• Class III: [k + Y2 : 2] & [k + Y4 : 2], [k + Y2 : 3] & [k + Y4 : 3]. Here, checking
the different combinations of i for the restriction of uε to ε(k − e2 + Y2) and
ε(k − e1 + Y4) yields a contradiction in each case.

In summary, the only relevant class to consider is class I, and applying the
implications for any k ∈ J ′

ε yields that Skε = Sε and Rk
ε = Rε for all k ∈ J ′

ε

and suitable Sε, Rε ∈ SO(2). We can now proceed as in Step 2 of the proof of
Proposition 4 a).

The identity in (2.35) can be shown as in (2.29) considering that Se1 · Re1 ∈
[−1, 1] for any S, R ∈ SO(2).

b) Since we merely need to recover affine functions with gradient in λSO(2)+
(1− λ)SO(2), the proof is almost identical with that of Proposition 4 b). The only
difference is that we can omit the scalar product Sεe1 · Rεe1 > 0 since it does not
appear in this context without orientation preservation. ��

Whereas the deformations in the case p ≥ 2 are strongly restricted, one ob-
serves, in accordance with intuition, much softer material behavior, as soon as
microfracture in the form of discontinuities in the joints occur. For this next propo-
sition, we require a suitable extension result, which we state and prove directly
after.

Proposition 7. (Affine limit deformations for p < 2) Let 1 < p < 2, then any
affinemap u : � → R

2 can be approximated weakly in W 1,p(�;R2) by a sequence
(uε)ε ⊂ W 1,p(�;R2) in such a way that

∫
�
uε dx = ∫

�
u dx and

∇uε ∈ SO(2)a.e. in � ∩ εYstiff .

Proof. Let ∇u = F with F ∈ R
2×2. The idea is to work here with a classical

Sobolev extension result [46, Lemma 2.5], bearing in mind that in contrast to [51,
Theorem 2.1], the functions we wish to extend are defined on different connected
components, which makes a pure estimate of the gradients impossible. First, we
define v on the stiff components via

v(x) = x − k + Fk if x ∈ k + Y1 ∪ Y3 (2.39)

for some k ∈ Z
2, see e.g., Fig. 6.

Let �̃ � � be an open set covering � and let L : W 1,p(�̃ ∩ εYstiff ;R2) →
W 1,p(�;R2) be the operator from Lemma 8 for U = �̃ and U ′ = �. For ε > 0,
let us then define the Sobolev function

uε(x) = εL(v)( x
ε
) + −

∫
�

u(y) − εL(v)(
y
ε
) dy, x ∈ �,
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Fig. 6. An illustration of the microcracks induced by the deformation v as in (2.39) for
F = 2 Id and λ = 1

2 . The stiff components (and their image) are colored in grey

Fig. 7. An illustration of the Y -periodic deformation v as in (2.39). The values of v of the
stiff components (colored in gray) can be used to calculate the line integral in (2.41) in the
sense of traces

which satisfies ∇uε = ∇(
L(v)

)
( ·
ε
) = Id ∈ SO(2) a.e. in � ∩ εYstiff by design.

Moreover, Riemann–Lebesgue’s Lemma yields that

∇uε ⇀ |Ystiff | Id+
∫
Y4

∇v dx +
∫
Y2

∇v dx in L p(�;R2×2), (2.40)

where the last two integrals can be calculated using Gauß-Green’s theorem,∫
Y4

∇v dx +
∫
Y2

∇v dx =
∫

∂Y4
v ⊗ ν dx +

∫
∂Y2

v ⊗ ν dx

= 2λ(1 − λ) Id+(
λ(Fe1 − e1)|(1 − λ)(Fe2 − e2)

)
+ (

(1 − λ)(Fe1 − e1)|λ(Fe2 − e2)
)

= (|Ysoft| − 1) Id+F, (2.41)

where ν denotes the outer unit normal, cf. also Fig. 7 for the boundary values of v in
the sense of traces. Hence, the weak limit in (2.40) is F . With Poincaré’s inequality
in mind, we then finally conclude that uε ⇀ u in W 1,p(�;R2), as desired. ��

This next lemma is needed to prove Proposition 7 and derive suitable energy
estimates later in Sect. 3.3.

Lemma 8. (Extension result for checkerboard structures) Let U ′ � U ⊂ R
2 be

bounded open sets and ε > 0 sufficiently small.
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a) If p > 2, then there is a linear operator L : W 1,p(U ∩ εYstiff ;R2) ∩
C0(U ∩ εYstiff ;R2) → W 1,p(U ′;R2) such that Lu = u a.e. in U ′ ∩ εYstiff
and

‖Lu‖W 1,p(U ′;R2) ≤ C‖u‖W 1,p(U∩εYstiff ;R2)

for a constant C > 0 independent of ε,U ′,U, and for every u ∈ W 1,p(U ∩
εYstiff ;R2) ∩ C0(U ∩ εYstiff ;R2).

b) If p ∈ (1, 2), then the operator L in a) is defined on all of W 1,p(U∩εYstiff ;R2).

Proof. We first cover the continuous case p > 2.
Step 1: A preliminary construction on the first unit cell.We set Z to be the union

of Y and its eight neighbors, i.e.,

Z :=
⋃
e∈I

(e + Y ) with I = {0,±e1,±e2, (±1,±1), (±1,∓1)}; (2.42)

we analogously set Zstiff as the union of Ystiff and the stiff components all its eight
neighboring cells. Moreover, consider the space

B =
{
(gi )i ∈

4∏
i=1

W
1− 1

p ,p
(�i ;R2) : gi−1(xi ) = gi (xi ) for all i ∈ {1, . . . , 4}

}
,

(2.43)

where g0 = g4, and �1, . . . , �4 ⊂ ∂Y2 are the four straight boundary pieces of
the polygon Y2 and xi ∈ ∂Y2 are the four vertices of Y2, all numbered clockwise,
starting in the lower left corner. The space B is exactly the trace space of Y2 as
can be seen in [47, Theorem 1.5.2.3 b)]. Let T : W 1,p(Y2;R2) → B be the trace
operator on the domain Y2 and let

T1 : W 1,p(−e1 + Y3;R2) → W
1− 1

p ,p
(�1;R2),

T2 : W 1,p(e2 + Y1;R2) → W
1− 1

p ,p
(�2;R2)

T3 : W 1,p(Y3;R2) → W
1− 1

p ,p
(�3;R2),

T4 : W 1,p(Y1;R2) → W
1− 1

p ,p
(�4;R2)

be the projections of the trace operators of the neighboring stiff components onto
�1, . . . , �4. In light of [52, Theorem 4.2], there exists a linear and continuous right
inverse S of T . By composing S with (T1, . . . , T4) and arguing similarly on Y4, we
find a linear and continuous operator L(1) : W 1,p(Zstiff ;R2) ∩ C0(Zstiff ;R2) →
W 1,p(Y ;R2) such that L(1)u = u a.e. in Ystiff and

‖L(1)u‖W 1,p(Y ;R2) ≤ C(λ, p)‖u‖W 1,p(Zstiff ;R2)

for every u ∈ W 1,p(U ∩ εYstiff ;R2).
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Step 2: Extension on large domains. Now, let V ′ � V ⊂ R
2 and ε sufficiently

small. Then, there exists an operator

L(2) : W 1,p(V ∩ Ystiff ;R2) ∩ C0(V ∩ Ystiff ;R2) → W 1,p(V ′;R2)

such that L(2)u = u a.e. in V ′ ∩ Ystiff and

‖L(2)u‖W 1,p(V ′;R2) ≤ C‖u‖W 1,p(V∩Ystiff ;R2), (2.44)

where Ystiff now denotes the Y -periodic extension in this step. Indeed, with J ′ =
{k ∈ Z : V ′ ∩ (k + Y ) �= ∅} we obtain

V ′ ⊂
⋃
k∈J ′

k + Y ⊂
⋃
k∈J ′

ε(k + Z) ⊂ V, (2.45)

which then allows us to work cell-wise. With πξ (x) := x + ξ for x, ξ ∈ R
2, we

find for fixed k ∈ J and u ∈ W 1,p(V ∩ Ystiff) ∩ C0(V ∩ Ystiff ;R2) the function

uk := L(1)(u|k+Zstiff
◦ πk) ◦ π−k ∈ W 1,p(k + (Zstiff ∪ Y );R2)

with L(1) as in Step 2. Since uk = u on k + Zstiff , we obtain that

L(2) : W 1,p(V ∩ Ystiff ;R2) ∩ C0(V ∩ Ystiff ;R2) → W 1,p(V ′;R2),

(L(2)u)(x) = uk(x) if x ∈ k + Y

is well-defined and satisfies L(2)u = u on V ′ ∩ Ystiff . On each k + Y , it holds that

‖uk‖W 1,p(k+Y ;R2) = ‖L0(u|k+Zstiff
◦ πk) ◦ π−k‖W 1,p(k+Y ;R2)

= ‖L0(u|k+Zstiff
◦ πk)‖W 1,p(Y ;R2)

≤ C(λ, p)‖u|k+Zstiff
◦ πk‖W 1,p(Zstiff ;R2)

= C(λ, p)‖u|k+Zstiff
‖W 1,p(k+Zstiff ;R2).

Summing this estimate over all k ∈ J ′ and exploiting (2.45) then yields (2.44).n
Step 3: Scaling analysis. The desired extension operator follows immediately

from a scaling analysis as in the first step of the proof of [46, Theorem 2.1].
Step 4: To obtain the desired result for p ∈ (1, 2), we merely need to add the

fact that the trace space B corresponding to Y2 as in (2.43) is now simply

B =
4∏

i=1

W
1− 1

p ,p
(�i ;R2)

in light of [47, Theorem 1.5.2.3 a)]; one works analogously on Y4. Omitting the
intersection with a suitable space of continuous functions, the rest of the proof can
be handled exactly as in the three steps before. ��
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Remark 7. (Porous checkerboard structures) So far, we have dealt with checker-
board structures composed of elastically stiff squares εYstiff and soft rectangles
εYsoft, so that the entire reference configuration � consists of an elastic material.
While this model is relevant, for example, in the production of waterproof or air-
tight auxetic materials, the porous counterpart, where εYsoft is replaced by void, is
also of significance.

To model this scenario, we choose a bounded Lipschitz domain �′ � �

and work with energies defined on the set Aε of all functions u ∈ W 1,p(� ∩
εYstiff ;R2)∩C0(� ∩ εYstiff ;R2)with

∫
�′∩εYstiff

u dx = 0 and ‖u‖L p(�∩εYstiff ;R2) ≤
M‖u‖L p(�′∩εYstiff ;R2) for a fixed constantM > 0; the latter condition serves to avoid
concentration effects near the boundary of �. Precisely, the energies are defined as

Iε : Aε → [0,∞], u �→
∫

�∩εYstiff
Wrig(∇u) dx,

with Wrig as in (1.10) and p > 2. Since Iε is defined on ε-dependent spaces, it
is necessary to explain the underlying topology of a corresponding �-convergence
(and compactness) result. In light of Lemma 8, every u ∈ A can be extended to a
function Lu in W 1,p(�′;R2) with estimates of the W 1,p-norms, which allows us
to use the weak topology in W 1,p(�′;R2) for the �-convergence of (Iε)ε. In par-
ticular, we say that a sequence (uε)ε with uε ∈ Aε converges to u ∈ W 1,p(�′;R2)

in W 1,p(�′;R2) if the sequence (Luε)ε ⊂ W 1,p(�′;R2) does so.
With this notion of convergence, it is straightforward to show that (Iε)ε �-

converges to the constant zero function defined on the set of all affine deformations
with vanishing mean value and gradient in K , cf. (1.8), considering that compact-
ness follows in view of the continuity of L the Poincaré’s inequality as in Lemma
12 below.

Remark 8. (Checkerboard structures with rigid rectangles)By an analogous argu-
mentation as in the proofs of Proposition 4, periodic high-contrast geometries with
stiff parts consisting of rectangles can be handled as well. In this situation, we set

Y1 = (0, λ] × (0, μ], Y2 = (0, λ] × (μ, 1], Y3 = (λ, 1] × (μ, 1],
Y4 = (λ, 1] × (0, μ]

for given λ,μ ∈ (0, 1). Instead of the weak limit (2.24), we now obtain

∇wε ⇀

∫
Y

∇w dx = λμS + (1 − λ)(1 − μ)R + λ(1 − μ)(Se1|Re2)
+ μ(1 − λ)(Re1|Se2)

= ((λS + (1 − λ)R)e1|(μS + (1 − μ)R)e2)

in L p(�;R2×2).

This yields that admissible limit deformations are affine with gradient in

K = {((λS + (1 − λ)R)e1|(μS + (1 − μ)R)e2) : R, S ∈ SO(2), Re1 · Se1 ≥ 0}.
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For every R, S ∈ SO(2) with Re1 · Se1 ≥ 0, we have

det
(
((λS + (1 − λ)R)e1|(μS + (1 − μ)R)e2)

)
= λμ + (1 − λ)(1 − μ) + (λ(1 − μ) + (1 − λ)μ)Se1 · Re1
= |Ystiff | + |Ysoft|Se1 · Re1 ≥ |Ystiff |,

as well as

|(λS + (1 − λ)R)e1| ≤ 1, |(μS + (1 − μ)R)e2| ≤ 1,

but

(λS + (1 − λ)R)e1 · (μS + (1 − μ)R)e2 = (μ − λ)Re1 · Se2.
Hence, F ∈ K is not necessarily a conformal contraction anymore but the Poisson’s
ratio corresponding to F is still negative.

3. Analysis of the Model with Stiff Tiles

3.1. Technical Tools

Webegin the analysis of themodel with diverging elastic energy by establishing
a replacement for the local results Lemma 2 and Corollary 3. In contrast to Sect. 2.1,
where we merely needed to consider the boundary values at a single soft rectangle,
our analysis now requires the four neighboring rigid squares as well. In this section,
we consider for μ ∈ (0, 1] the cross-like structure

E =
4⋃

i=0

Ei , E ′ = E \ E0 with

E0 = (0, 1] × (0, μ], E1 = (0, 1] × (−1, 0], E2 = (−μ, 0] × (0, μ],
E3 = E1 + (1 + μ)e2, E4 = E2 + (1 + μ)e1; (3.1)

see also Fig. 8.
We begin with a brief lemma about transferring the Ciarlet–Nečas condition

from one function to one that is sufficiently close with respect to the W 1,p-norm.

Lemma 9. (Approximate Ciarlet–Nečas condition) Let p > 2, M ⊂ R
2 be the

union of finitely many bounded Lipschitz-domains. If u ∈ W 1,p(M;R2) satisfies
the Ciarlet-Nečas condition (CN) for � = M and there is v ∈ W 1,p(M;R2) with

‖u − v‖W 1,p(M;R2) ≤ h (3.2)

for some h ∈ (0, 1) sufficiently small, then there exists a constant C = C(M, p) >

0 such that ∫
M

| det∇v| dx ≤ |v(M)| + C
(
1 + ‖∇v‖L2(M;R2×2)

)
h.
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Fig. 8. An illustration of the cross structure defined in (3.1)

Proof. Let M1, . . . , Mn ⊂ R
2 for n ∈ N be the finitely many bounded Lipschitz

domains that comprise M , i.e., M = ⋃n
i=1 Mi . In light of the Sobolev embeddings

applied to each Mi , the bound (3.2) is (up to a constant C1 = C1(M, p) > 0) also
uniform on Mi . We therefore obtain

u(Mi ) ⊂ v(Mi ) + B(0,C1h),

which, after taking the union i = 1, . . . , n, leads to the estimate

|u(M)| ≤ |v(M)| + C2h (3.3)

for a constant C2 = C2(M, p) > 0. On the other hand, the estimate (3.2) yields
that ∫

M
| det∇u − det∇v| dx =

∫
M

|(∂1u)⊥ · ∂2u − (∂1v)⊥ · ∂2v| dx

=
∫
M

|(∂1u)⊥(∂2u − ∂2v) + (∂1u − ∂1v)⊥ · ∂2v| dx

≤
∫
M

|∂1u||∂2u − ∂2v| + |∂1u − ∂1v||∂2v| dx
≤ (‖∂1u‖L2(M;R2) + ‖∂2v‖L2(M;R2))‖u − v‖W 1,2(M;R2)

≤ (‖u − v‖W 1,2(M;R2) + 2‖∇v‖L2(M;R2×2))‖u − v‖W 1,2(M;R2)

≤ (C1h + 2‖∇v‖L2(M;R2×2))C1h ≤ 2C1
(
1 + ‖∇v‖L2(M;R2×2)

)
h (3.4)

if C1h < 2. Now, we combine (CN) with the estimates (3.4) and (3.3) to conclude
that ∫

M
| det∇v| dx ≤ |v(M)| + (2C1 + C2)

(
1 + ‖∇v‖L2(M;R2×2)

)
h.

��
The next lemma, which is substantial for characterizing the set of admissible

limit deformations, is a quantitative rigidity estimate in the spirit of [45] for cross
structures E ′ as in (3.1). By combining Lemma 9with careful geometric arguments,
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Fig. 9. The four rotated squares v1(E1), . . . , v4(E4) (which have side length 1). The con-
nected image u(∂E0) (colored in red) is contained in the four closed tubes (colored in yellow
and green) of thickness 2η. The points a, b, c, d, a′, b′, c′, d ′ are defined as in (3.9) (color
figure online)

we show that the rotations on opposite squares can be selected identical while
controlling the error terms. This result demonstrates, in particular, that Corollary 3
a) holds true if orientation preservation is replaced by non-self-interpenetration of
matter.

Lemma 10. (Quantitative rigidity estimate for cross structures) Let p > 2 and
E, E ′, E0, . . . , E4 be as in (3.1). There is a constantC = C(p) > 0 and δ0 = δ0(p)
with the following property: For every u ∈ W 1,p(E;R2) satisfying the Ciarlet–
Nečas condition (CN) on E ′ and for which ‖ dist(∇u,SO(2))‖L p(E ′) =: δ < δ0,
there exist R, S ∈ SO(2) such that

‖∇u − S‖L p(E1∪E3;R2×2) + ‖∇u − R‖L p(E2∪E4;R2×2) ≤ Cδ
1
2 (3.5)

and

Re1 · Se1 ≥ −Cδ
1
2 . (3.6)

Proof. This proof concentrates on the more delicate scenario μ = 1, while the
case μ ∈ (0, 1) shall be discussed at the end. We first establish (3.5) and (3.6) with
the right-hand side Cδ

1
3 and improve the estimate later on.

Step 1: Geometric setup. Due to the quantitative geometric rigidity estimate by
Friesecke, James andMüller [45,Theorem3.1] there exist fourmatrices S1, S3, R2, R4 ∈
SO(2) such that

‖∇u − Si‖L p(Ei ,R
2×2), ‖∇u − R j‖L p(E j ,R

2×2) ≤ C‖ dist(∇u,SO(2))‖L p(E ′)
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for all i ∈ {1, 3} and j ∈ {2, 4}. The reversed triangle inequality then yields that

‖∇u − S1‖L p(E1∪E3;R2×2) ≤ C(‖ dist(∇u,SO(2))‖L p(E ′) + |S1 − S3|),
‖∇u − R2‖L p(E2∪E4;R2×2) ≤ C(‖ dist(∇u,SO(2))‖L p(E ′) + |R2 − R4|). (3.7)

Our primary task is to obtain an estimate for the quantities |S1 − S3| and |R2 − R4|
in terms of powers of ‖ dist(∇u,SO(2))‖L p(E ′). For i ∈ {1, 3}, j ∈ {2, 4} we
set si = ∫

Ei
u(x) − Si x dx , r j = ∫

E j
u(x) − R j x dx and introduce the auxiliary

functions

vk : Ek → R
2, x �→

{
Si x + si if k = i,

R j x + r j if k = j,
for k ∈ {1, . . . , 4}.

From Poincaré’s inequality and the Sobolev embeddings, we then obtain, for all
k ∈ {1, . . . , 4}, the estimates

‖u − vk‖C0(Ek ;R2) ≤ C‖u − vk‖W 1,p(Ek ;R2) ≤ C‖ dist(∇u,SO(2)‖L p(E ′) =: η.

(3.8)

From this uniform estimate, we infer that u(Ek) ⊂ vk(Ek)+ B(0, η); in particular,
it holds that

u(∂E0) ⊂
4⋃

k=1

vk(∂Ek ∩ ∂E0) + B(0, η),

see also Fig. 9. To shorten the notation, we set

a = v1(x1), b = v3(x2), c = v3(x3), d = v1(x4),

a′ = v2(x1), b′ = v2(x2), c′ = v4(x3), d ′ = v4(x4), (3.9)

and find that (3.8) and the continuity of u yields that

|a − a′|, |b − b′|, |c − c′|, |d − d ′| ≤ 2η. (3.10)

The goal for the remainder of this proof is to show that the polygons abcd and
a′b′c′d ′ are close to a parallelogramwith a small error in terms of powers of η; note
that S1e1 = S3e1 (or R2e2 = R4e2) ifabcd (ora′b′c′d ′) is a parallelogram. First, we
focus on the polygon abcd and estimate the deviation of c−b = v3(x3)−v3(x2) =
S3e1 from d − a = v1(x4) − v1(x1) = S1e1. In light of (3.9), (3.10) and the fact
that v2, v4 are a rigid body motions, we find that

b ∈ A(a, 1 − 4η, 1 + 4η) and c ∈ A(d, 1 − 4η, 1 + 4η) (3.11)

if η is sufficiently small, cf. also for the notation of the annuli (1.13). Moreover, it
holds that

|d − a| = 1 and |b − c| = 1

since v1 and v3 are rigid body motions.
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Fig. 10. The two colored annuli describe the regions in which the points b, c can lie once a
and d are fixed. If b is sufficiently far from d , then we choose b̄ ∈ a + S1 such that |b − b̄|
is small and compare the intersection of b̄ + S1 and d + S1 with the point c, which lies in
the intersection of the orange annulus with b + S1 (colored in red) (color figure online)

Step 2: Auxiliary function. In this step, we show that there exists a continuous
and piecewise affine function v̄ : E → R

2 such that v̄|Ei
is a rigid body motion,

and

‖vi − v̄‖W 1,p(Ei ;R2) ≤ Cη
1
3 . (3.12)

for every i ∈ {1, . . . , 4}. Such a function is uniquely determined on E ′ by the
vertices v̄(x1), . . . , v̄(x4). Finding such suitable points is the goal of this next step.

Step 2a: Auxiliary points.We show that there exist b̄ ∈ a + S1 and c̄ ∈ d + S1

such that |b̄ − c̄| = 1 and

|b̄ − b| + |c̄ − c| ≤ Cη
1
3 . (3.13)

If |b − d| ≤ η
1
3 , then we choose b̄ = d and an arbitrary c̄ ∈ d + S1 such that

|c̄ − c| ≤ 4η. In this case, (3.13) holds if η � 1.
Now, let |b−d| > η

1
3 , then we choose an arbitrary b̄ ∈ a+S1 with |b−b̄| ≤ 4η

and search for a point c̄ ∈ d + S1 that satisfies |b̄ − c̄| = 1; note that there exist at
least one but at most two options. In any case, for some r ∈ [1 − 4η, 1 + 4η], the
following system of equations has to be satisfied by c̄ and c:{

|c̄|2 − 2c̄ · d + |d|2 = |c̄ − d|2 = 1,

|c̄|2 − 2c̄ · b̄ + |b̄|2 = |c̄ − b̄|2 = 1,
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and {
|c|2 − 2c · d + |d|2 = |c − d|2 = r2,

|c|2 − 2c · b + |b|2 = |c − b|2 = 1.

By suitably combining these equations, we obtain, for the difference c − c̄ in the
direction d − b, that

2(c − c̄) · (d − b) = 2c · (d − b) − 2c̄ · (d − b̄) + 2c̄ · (b − b̄)

≤ 1 − r2 + |d|2 − |b|2 − |d|2 + |b̄|2 + 2|c̄||b − b̄|
≤ 1 − r2 + 4(|b̄| − |b|)(|b̄| + |b|) + 8η|c̄|
≤ 8η + 16η2 + 4η(|b − a| + |b̄ − a| + 2|a|)

+ 8η(|c̄ − d| + |d − a| + |a|)
≤ 24η + 4η(3 + 2|a|) + 8η(3 + |a|), (3.14)

since η � 1. Without loss of generality, we may now assume that a = 0, otherwise

we move the coordinate system. Since |d − b| > η
1
3 we conclude that∣∣∣∣(c − c̄) · d − b

|d − b|
∣∣∣∣ ≤ C

η

η
1
3

= Cη
2
3 . (3.15)

Essentially, this estimate ensures that c̄ lies in an infinitely long tube in the direction

(d − b)⊥ with thickness Cη
2
3 around c, see also Fig. 10. The intersection of this

tube with the annulus A(d, 1 − 4η, 1 + 4η) has at most two connected components
T1, T2 ⊂ R

2. If T1 �= T2, then we find one of the two possible choices for c̄ in each
of the two sets. Naturally, we select c̄ to be in the same component as c. While the

width (measured in the direction b−d
|b−d| ) of T1 ∪ T2 is at most Cη

2
3 due to (3.15), its

height (measured in the direction (b−d)⊥
|b−d| ) becomes largest as soon as the two sets

touch. In this case, it holds that T1 = T2 and we may select any of the two choices
for c̄. We then estimate via Pythagoras that

∣∣∣∣(c − c̄) · (d − b)⊥

|d − b|
∣∣∣∣ ≤ C

√
(1 + 4η)2 − (1 − 4η − Cη

2
3 )2 ≤ C

√
η

2
3 = Cη

1
3 ,

(3.16)

since η � 1. This yields the desired estimate (3.13).
Step 2b: Construction of the auxiliary function v̄. Let v̄ : E ′ → R

2 be contin-
uous such that v̄|Ei

is a rigid body motion for every i ∈ {1, . . . , 4}, and
v̄(x1) = a, v̄(x2) = b̄, v̄(x3) = c̄, and v̄(x4) = d. (3.17)

Exactly as in the proof of Lemma 2 (cf. Case 1), we can continuously extend v̄ to
a piecewise affine function defined on all of E . We now aim to prove the estimate
(3.12). Indeed, we first observe that v̄ = v1 on E1 by design. We then consider the
case i = 3. Under consideration of (3.9), (3.17) and (3.13), it holds that∣∣(v̄(x3) − v̄(x2)

) − (
v3(x3) − v3(x2)

)∣∣ = |(c̄ − b̄) − (c − b)|
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≤ |c̄ − c| + |b̄ − b| ≤ Cη
1
3 .

Since v3 and v̄ are both rigid body motions on the bounded set E3, and |Q− Q′| =√
2|Qe1 − Q′e1| for all Q, Q′ ∈ SO(2), we conclude that

‖v3 − v̄‖W 1,p(E3;R2) ≤ Cη
1
3 .

As for i ∈ {2, 4}, we repeat the same strategy and recall the estimates (3.10). Now,
we have proven the desired estimate (3.12).

We also point out that

‖u − v̄‖W 1,p(Ei ;R2) ≤ Cη
1
3 for every i ∈ {1, . . . , 4} (3.18)

in view of (3.8) and (3.12).
Step 3: Estimating |S1 − S3| and |R2 − R4|. In the following, we differentiate

between the different possible geometric of outcomes for v̄(∂E0) (in other words
the polygon ab̄c̄d). While some geometries (such as the case that ab̄c̄d is a paral-
lelogram) provide the desired estimates for |S1 − S3| and |R2 − R4|, others will be
excluded via the non-interpenetration of u.

Step 3a: The v̄(∂E0) is a parallelogram. In this case, it holds that

d − a = c̄ − b̄ and b̄ − a = c̄ − d. (3.19)

It is then straightforward to derive

|S1 − S3| = √
2|(S3 − S1)e1| = √

2|(c − b) − (d − a)|
≤ √

2(|(c̄ − b̄) − (d − a)| + |c̄ − c| + |b̄ − b|) ≤ Cη
1
3

from (3.9), and (3.13). We analogously conclude, under additional consideration

of (3.10), that |R2 − R4| ≤ Cη
1
3 . Together with (3.7), these inequalities already

prove the desired the estimate (3.5) if η � 1.
Step 3b: The v̄(∂E0) is not a parallelogram. In this case, it holds that b̄ = d or

c̄ = a. We may, due to symmetry reasons, assume without loss of generality that
b̄ = d. Moreover, let

c̄ − b̄ = Rϕ(a − d) (3.20)

for some ϕ ∈ [0, π ] (the case ϕ ∈ [0,−π ] can be handled analogously), cf. Fig. 11.
If ϕ = π , then (3.19) also holds and we obtain (3.5) exactly as in Step 3a.

What follows is a discussion of the cases ϕ ∈ [0, π) where an overlap of
the deformed squares v̄(Ei ) occurs, see Fig. 11. In light of Lemma 9 applied to
M = int E ′, u, p as given, and v = v̄, we obtain the inequality

|E ′| ≤ |v̄(E ′)| + C0η
1
3 ,

for a constant C0 > 0; here we used (3.18) and that v̄ is a rigid body motion on
each Ei , i ∈ {1, . . . , 4}. We further simplify this estimate to

4 − C0η
1
3 ≤ |v̄(E ′)| ≤ 4. (3.21)
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Fig. 11. An illustration of the reference configuration E and its deformed configuration under
the continuous map v̄. Here, the points ab̄c̄d do not form a parallelogram, thus leading to
an overlap of the deformed squares v̄(E1) and v̄(E4) of at least the hatched triangle with
θ = π − ϕ

If ϕ = 0, then the continuity and the design of v̄ yields that |v̄(E ′)| = 2, so that
(3.21) yields a contradiction if η � 1. Due to monotonicity reasons, we can also
exclude all cases ϕ ∈ [0, π

2 ] since |v̄(E ′)| = 3 for ϕ = π
2 . We shall thus assume

from now on that ϕ ∈ (π
2 , π).

The region D = v̄(E1) ∩ v̄(E4) in which we observe an overlap has at least
measure 1

2 sin(π − ϕ) = 1
2 sin ϕ; in other words, |v̄(E ′)| ≤ 4 − 1

2 sin ϕ. Let η be

small enough that C0η
1
3 < 1

2 , then there exists ϕ0 ∈ (π
2 , π) such that 1

2 sin ϕ0 =
C0η

1
3 . We then derive from (3.21) the contradiction

4 − C0η
1
3 ≤ |v̄(E ′)| ≤ 4 − 1

2
sin ϕ < 4 − 1

2
sin ϕ0 = 4 − C0η

1
3 , (3.22)

for every ϕ ∈ (π
2 , ϕ0). In the cases ϕ ∈ [ϕ0, π), it holds that 0 < sin ϕ ≤ sin ϕ0

and thus,

|S3 − S1| = √
2|(S3 − S1)e1|

≤ √
2(|(c̄ − b̄) − (d − a)| + |b̄ − b| + |c̄ − c|)

= √
2|(−Rϕ − Id)(d − a)| + Cη

1
3

≤ C
(| − Rϕ − Id | + η

1
3
)

≤ C
(| sin ϕ| + ∣∣ − 1 − cosϕ

∣∣ + η
1
3
)

≤ C
(| sin ϕ| + ∣∣1 − | cosϕ|∣∣ + η

1
3
)

≤ C
(| sin ϕ| + ∣∣1 −

√
1 − sin2 ϕ

∣∣ + η
1
3
)

≤ C
(| sin ϕ| +

√
|1 − 1 + sin2 ϕ| + η

1
3
) ≤ C

(| sin ϕ0| + η
1
3
) ≤ Cη

1
3

(3.23)

under consideration of (3.20), (3.13), and the Hölder-continuity of the square-root.
Analogously, obtain the same estimate for |R2 − R4| if we take (3.10) into account.
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We now set S := S1 and R := R2 and thus, obtain the the desired estimate (3.5) in
light of (3.7), (3.8) for η � 1.

Step 4: The scalar product estimate. We now prove (3.6) with exponent 1
3 on

the right-hand side. Indeed, if ab̄c̄d is not a parallelogram, we may assume (as in
Step 3b) that b̄ = d and obtain that

Se1 · Re1 = Se1 · (a′ − b′)⊥

= Se1 · (a′ − a)⊥ + Se1 · (b − b′)⊥ + Se1 · (b̄ − b)⊥ + Se1 · (a − b̄)⊥

≥ −Cη
1
3 + Se1 · (a − b̄)⊥ = −Cη

1
3 − (d − a) · (d − a)⊥ = −Cη

1
3

due to (3.10), (3.13). If ab̄c̄d is a parallelogram and

Se1 · (a − b̄)⊥ = ∇v̄|E1
e1 · ∇v̄|E2

e1 > 0, (3.24)

then it holds that

Se1 · Re1 ≥ −Cη
1
3 + Se1 · (a − b̄)⊥ ≥ −Cη

1
3 + ∇v̄|E1

e1 · ∇v̄|E2
e1 > −Cη

1
3 .

(3.25)

Lastly, we deal with the case that (3.24) is not satisfied. If Se1 · (a − b̄)⊥ = 0,
then there is nothing to prove. Otherwise, let ϕ ∈ (−π

2 , π
2 ) be such that R̄e2 :=

v̄|E2
e2 = −Rϕv̄|E1

e2 andnote that forϕ = 0 it holds that |v̄(E ′)| = 1,which causes

a contradiction to (3.21) for η � 1. Henceforth, we shall only cover ϕ ∈ (0, π
2 ) due

to symmetry reasons. In these cases, we observe an overlap of v̄(E1) and v̄(E4)

with at least measure 1
2 sin(

π
2 − ϕ) = 1

2 cosϕ. We now proceed analogously to

Step 3b to find some ϕ0 ∈ (0, π
2 ) such that 1

2 cosϕ0 = C0η
1
3 with C0 as in (3.21).

Every geometry resulting from ϕ ∈ (0, ϕ0) can then be excluded as in (3.22). On
the other hand, for ϕ ∈ (ϕ0,

π
2 ), it holds that

Se1 · (a − b̄)⊥ = det(Se1|R̄e2) = − sin(
π

2
− ϕ)

= − cosϕ ≥ − cosϕ0 = −2C0η
1
3 ,

and hence Se1 · Re1 ≥ −Cη
1
3 similarly to (3.25).

Step 5: Improving the estimate. In light of Step 3, we find that either v̄(∂E0)

forms a parallelogram, or it holds that b̄ = d or c̄ = a together with (3.20) for
ϕ ≥ π

2 . We find in either case that |c̄ − a| ≥ √
2 or |b̄ − d| ≥ √

2 due to
the parallelogram identity or the choice ϕ ≥ π

2 . In light of (3.13), it holds that
|c − a| ≥ l or |b − d| ≥ l for some constant length l > 0 if η is sufficiently small.
Let us assume that the latter inequality is true. We then repeat the procedure in
Steps 2–4 to improve the estimates (3.5) and (3.6). Precisely, we first construct a
new auxiliary function ṽ : E → R

2 similar to v̄ as in Step 2, for which we first
need to find two points b̃ ∈ a + S1 and c̃ ∈ d + S1 such that |b̃ − c̃| = 1 and

|b̃ − b| + |c̃ − c| ≤ Cη
1
2 . (3.26)
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To this end, first choose any c̃ ∈ d + S1 such that |c̃ − c| < 4η and continue as
in the proof of (3.14)–(3.16), exploiting the new estimate |b − d| > l for some
constant l > 0 independent of η. The rest of the proof works analogously to the
Steps 2b - 4.

Step 6: The case μ ∈ (0, 1). The general strategy is quite similar. Step 1
stays essentially the same with the difference being b ∈ A(a, μ − 4η,μ + 4η) and
c ∈ A(d, μ − 4η,μ + 4η) instead of (3.11).

Our next task is to find auxiliary points b̄ ∈ a+μS1 and c̄ ∈ d+μS1 such that
|b̄− c̄| = 1 and (3.26) similar to Step 2a; the construction of the auxiliary function
v̄ : E → R

2 with the help of these points works exactly as before. Since μ < 1
we always find that |b − d| > l for some l > 0 independent of η if η � 1 is small
enough. We may hence argue as in Step 5 to establish (3.26). Setting S := S1 and
R := R2, we then need to prove estimates for |S − S3|, |R − R4| and the scalar
product Se1 · Re1 similarly to Steps 3–4.

To this end, we seek to exclude invalid geometries for v̄(∂E0) with the help
of the approximate Ciarlet-Nečas condition from Lemma 9. The estimate (3.21)
changes in this case to

2(1 + μ2) − C0η
1
2 ≤ |v̄(E ′)| ≤ 2(1 + μ2). (3.27)

The procedure to produce a contradiction to (3.27) for η � 1 is now very similar
to what we presented in Steps 3–4 and is based again on finding suitable rectangles
that emerge from overlapping two neighboring rigid squares. Since the general
methodology is virtually the same, we shall only explain one scenario in detail for
illustration, see also Fig. 12. Let us assume that b̄−a = Rϕ(d−a)⊥ for ϕ ∈ [0, π

2 ),
then we find that the intersection of v̄(E3) and v̄(E4) contains at least a triangle of
measure 1

2μ
2 sin(θ) with θ = π

2 −ϕ. Choose now for sufficiently small η an angle

ϕ0 in such a way that 1
2μ

2 cosϕ0 = C0η
1
2 so that the monotonicity of the cosine on

[0, π
2 ] generates a contradiction to (3.27) for every ϕ ∈ (0, ϕ0). In the remaining

cases, a direct calculation in the spirit of (3.23) shows that

|Se1 − S3e1| ≤ C(cosϕ + η
1
2 ) ≤ C(cosϕ0 + η

1
2 ) ≤ Cη

1
2

and similarly for |Re2 − R4e2|, which proves the desired estimate (3.5) when
combined with (3.7). The scalar product estimate (3.6), cf. Step 4, can be handled
analogously.

Finally, we shall point out that quantity δ in the formulation of the statement is
simply a multiple (dependent only on p) of η. ��

In the following, we shall briefly remark on the dependence of the constants
and rotations in Lemma 10 on uniform scalings and translations:

Remark 9. (Scaling analysis) Let ρ > 0 be arbitrary, then for every u ∈
W 1,p(ρE;R2) that satisfies theCiarlet–Nečas condition (CN) onρE ′ and forwhich
‖ dist(∇u,SO(2))‖L p(ρE ′) < δ0ρ

2
p , there exist R, S ∈ SO(2) such that
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Fig. 12. An illustration of the reference configuration E and its deformed configuration under
the continuous map v̄. Here, the points ab̄c̄d do not form a parallelogram, thus leading to
an overlap of the deformed squares v̄(E3) and v̄(E4) of at least the hatched triangle with
θ = π

2 − ϕ

‖∇u − S‖L p(ρE1∪ρE3,R2×2) + ‖∇u − R‖L p(ρE2∪ρE4,R2×2)

≤ Cρ
1
p ‖ dist(∇u,SO(2))‖

1
2
L p(ρE ′)

and Re1 · Se1 ≥ −Cρ
− 1

p ‖ dist(∇u,SO(2))‖
1
2
L p(ρE). Here, the constants δ0 and C

(which depend only on p) and the rotations S, R are exactly the same as in the case
ρ = 1 in Lemma 10 and are invariant under translations of the domain. This is a
direct consequence of a change of variables in the occurring integrals.

Next, we prove a Poincaré inequality for open sets of checkerboard structure.
The prove is essentially the same as in the case of connected open sets and is based
on an argument via contradiction. This way, however, we do not obtain an explicit
dependence of the emerging constant.

Lemma 11. (Poincaré-inequality for sets with path-connected closure) Let p > 2,
N ∈ N and let U1, . . . ,UN be disjoint, bounded Lipschitz domains such that the
closure ofU := U1∪. . .∪UN is path-connected. Then there exists a constant C > 0
with the following property: For every u ∈ W 1,p(U ;R2)∩C0(U ;R2)∩L p

0 (U ;R2),
it holds that

‖u‖L p(U ;R2) ≤ C‖∇u‖L p(U ;R2×2). (3.28)

Proof. We argue via contradiction and assume that for every j ∈ N there exists a
sequence (ũ j ) j ⊂ W 1,p(U ;R2) ∩ C0(U ;R2) ∩ L p

0 (U ;R2) and

‖ũ j‖L p(U ;R2) > j‖∇ũ j‖L p(U ;R2×2). (3.29)

Wenowdefineu j := ‖ũ j‖−1
L p(U ;R2)

ũ j andobtain that (u j ) j is bounded inW 1,p(U ;R2).

In particular, each unj := u j |Un
for n ∈ {1, . . . , N } is bounded in W 1,p(Un;R2).

We can thus find un ∈ W 1,p(Un;R2) such that

unj ⇀ un in W 1,p(Un;R2),
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unj → un in C0(Un;R2), (3.30)

and we set

u : U → R
2, x �→ un(x) if x ∈ Un .

In light of the weak convergence of (unj ) j , (3.29) and the lower-semicontinuity of

the norm, we find that un is constant onUn with value, say dn ∈ R
2. Since each un

is continuous onUn , andU is path-connected, we find that dn = dm = d ∈ R
2 for

every n,m ∈ {1, . . . , N }. Hence, the vanishing mean value of u on U yields that

0 =
∫
U
u(x) dx =

N∑
n=1

|Un|d,

which implies that d = 0 and u = 0 on all of U . On the other hand, we then find a
contradiction to ‖u‖L p(U ;R2) = 1 as u is the strong limit of (u j ) j on L p(U ;R2),
recall (3.30) and ‖u j‖L p(U ;R2) = 1. ��

As we have pointed out above, it is not clear if or how the constant C in (3.28)
depends on the domain. We address this issue in the next lemma under additional
assumptions and slight change in the domains of integration. This result serves as
the second key ingredient in the characterization of the macroscopic deformation
behavior.

Lemma 12. (Poincaré estimate for checkerboard structures) Let p > 2, U ′ � U be
bounded Lipschitz domains, and M > 0. There exists a constantC > 0 independent
of ε such that for every u ∈ W 1,p(U ;R2) with

∫
U ′∩εYstiff

u dx = 0 (3.31)

and

‖u‖L p(U∩εYstiff ;R2) ≤ M‖u‖L p(U ′∩εYstiff ;R2) (3.32)

it holds that

‖u‖L p(U ′∩εYstiff ;R2) ≤ C‖∇u‖L p(U∩εYstiff ;R2×2).

Before we prove this result, we first cover an alternative auxiliary extension-
type result, in which the deformations and the gradients can be estimated separately,
cf. [46].

Lemma 13. (Approximate extension result for checkerboard structures) Let p > 2,
U ′ � U ⊂ R

2 be a bounded open sets and ε > 0 sufficiently small. Moreover, let

Br :=
⋃
e∈I

Y ∩ (e + B(0, r)) with I = {0, λ, 1}2 and r <
1

4
min{λ, 1 − λ},

(3.33)
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Fig. 13. The unit cell Y (indicated in blue) and its immediate neighboring stiff components.
The eight ellipses cover the soft part Ysoft in such a way that they overlap with exactly one
straight piece of ∂Ysoft . The red quarter-circles describe the set Ysoft ∩ Br in the unit cell
with Br as in (3.33) (color figure online)

as well as its Y -periodic extension. There exists a constant C > 0 independent
of ε,U,U ′ and a linear and continuous operator Lr : W 1,p(U ∩ εYstiff ;R2) ∩
C0(U ∩ εYstiff ;R2) → W 1,p(U ′;R2) such that Lru = u a.e. in U ′ ∩ εYstiff\εBr
and

‖Lru‖L p(U ′;R2) ≤ C‖u‖L p(U∩εYstiff ;R2),

‖∇(Lru)‖L p(U ′;R2×2) ≤ C‖∇u‖L p(U∩εYstiff ;R2×2)

for every u ∈ W 1,p(U ∩ εYstiff ;R2) ∩ C0(U ∩ εYstiff ;R2).

Proof. This proof is subdivided into two main arguments. For V ⊂ R
2 with U ′ �

V � U wefirst find anoperator L̂r : W 1,p(U∩εYstiff ;R2)∩C0(U ∩ εYstiff ;R2) →
W 1,p(V \(εBr ∩ εYsoft);R2) such that L̂r u = u a.e. in V ∩ εYstiff and

‖L̂r u‖L p(V \(εYsoft∩εBr );R2) ≤ C‖u‖L p(U∩εYstiff ;R2),

‖∇(L̂r u)‖L p(V \(εYsoft∩εBr );R2×2) ≤ C‖∇u‖L p(U∩εYstiff ;R2×2)

for every u ∈ W 1,p(U ∩ εYstiff ;R2) ∩ C0(U ∩ εYstiff ;R2).
For such functions u, we then define the desired operator as

Lr (u) := L̃r
(
L̂r (u)|V∩ε(Y\Br )

)

where the linear and continuousmap L̃r : W 1,p(V∩ε(Y\Br );R2) → W 1,p(U ′;R2)

is taken as in [46, Theorem2.1] for E = Y \Br .We shall now detail the construction
of L̂ .

Step 1: A preliminary construction on the first unit cell.Let Z be as in (2.42), and
recall the analogous definition of Zstiff . Moreover, we define Yr

soft := Ysoft \ Br .
The next task is to choose suitable sets V1, . . . , VN for N ≥ 8 that cover the
compact set Ysoft in a particular way. Each of these sets shall overlap with at most
one of the eight straight components of ∂Ysoft, see e.g., Fig. 13. Then, there exists a
partition of unity (ϕi )i with ϕi ∈ C∞

c (Vi ;R2) for i = 1, . . . , N and
∑N

i=1 ϕi = 1
on

⋃N
i=1 Vi . With standard mirroring techniques (cf. [53, Chapter 5]) performed



Arch. Rational Mech. Anal. (2024) 248:46 Page 43 of 55 46

on each of the sets V1, . . . , VN , we can thus find a linear and continuous operator
L(1)
r : W 1,p(Zstiff ;R2) ∩ C0(Zstiff ;R2) → W 1,p(Zstiff ∪ Yr

soft;R2) such that

L(1)
r u = u a.e. in Zstiff

‖L(1)
r u‖L p(Zstiff∪Yr

soft;R2) ≤ C(λ, p, r)‖u‖L p(Zstiff ;R2)

‖∇(L(1)
r u)‖L p(Zstiff∪Yr

soft;R2×2) ≤ C(λ, p, r)‖u‖W 1,p(Zstiff ;R2×2) (3.34)

for every u ∈ W 1,p(Zstiff ;R2) ∩ C0(Zstiff ;R2). We shall point out that not all of
Zstiff is needed to obtain an extension on Yr

soft but it keeps the notation easier later
on.

Step 2: Improvement on the first unit cell. The next objective is to construct
another extension operator that allows better estimates for the gradients than in
(3.34). This step can be handled similarly to the proof of [46, Lemma 2.6]. We
define L(2)

r : W 1,p(Zstiff ;R2) ∩ C0(Zstiff ;R2) → W 1,p(Zstiff ∪ Yr
soft;R2) by

setting

L(2)
r u := L(1)

r

(
u − (u)Zstiff

) + (u)Zstiff , u ∈ W 1,p(Zstiff ;R2) ∩ C0(Zstiff ;R2)

with (u)Zstiff = ∫
Zstiff

u dx and L(1)
r as in Step 1. Let u ∈ W 1,p(Zstiff ;R2) ∩

C0(Zstiff ;R2) be arbitrary. Since L(1)
r is a linear extension operator, it holds that

L(2)
r u = u on Zstiff . As for the L p-estimate of the gradient, we use the properties

of L(1)
r , and invoke Lemma 11 for U = Zstiff to compute that

∫
Zstiff∪Yr

soft

|∇(L(1)
r u)|p =

∫
Zstiff∪Yr

soft

|∇(
L(1)
r (u − (u)Zstiff )

)|p dx

≤ C(λ, p, r)
( ∫

Zstiff

|u − (u)Zstiff |p dx +
∫
Zstiff

|∇u|p dx
)

≤ C(λ, p, r)
∫
Zstiff

|∇u|p dx,

where the constant C(λ, p, r) may change from line to line. The estimate
∫
Zstiff∪Yr

soft

|L(1)
r u|p ≤ C(λ, p, r)

∫
Zstiff

|u|p dx

can be acquired exactly as in the proof of [46, Lemma 2.6].
Step 3: Extension on large domains and scaling analysis. The rest of the proof

can be executed exactly as in the Steps 2 and 3 of the proof of Lemma 8. ��
We are now positioned to prove the Poincaré-type estimate in Lemma 12.

Proof of Lemma 12. We argue via contradiction and suppose that for every j ∈ N

there exists u j := uε j ∈ W 1,p(U ;R2) satisfying (3.31) and (3.32) for ε = ε j , and

‖u j‖L p(U ′∩ε j Ystiff ;R2) > j‖∇u j‖L p(U∩ε j Ystiff ;R2×2). (3.35)
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Step 1: Rescaling and extending u j . We now normalize u j by introducing

v j := ‖u j‖−1
L p(U ′∩ε j Ystiff ;R2)

u j on U, (3.36)

and observe that v j still satisfies (3.31) for all j ∈ N. Moreover, it holds that

‖v j‖L p(U∩ε j Ystiff ;R2) ≤ M and ‖∇v j‖L p(U∩ε j Ystiff ;R2×2) <
1

j
, (3.37)

due to (3.32) and (3.35).
Now, chooseU ′′ � U ′ � U , where the setU ′′ is to be specified later, and apply

Lemma 13 for the pair of sets U ′′ � U and sufficiently small ε. This way, we find
v̄ j := Lrv j ∈ W 1,p(U ′′;R2) with the properties

v̄ j = v j a.e. in U
′′ ∩ ε j Ystiff \ ε j Br ,

‖v̄ j‖L p(U ′′;R2) ≤ C(λ, p, r)‖v j‖L p(U∩ε j Ystiff ;R2),

‖∇v̄ j‖L p(U ′′;R2×2) ≤ C(λ, p, r)‖∇v j‖L p(U∩ε j Ystiff ;R2×2). (3.38)

Combining (3.37) with (3.38) then produces

‖v̄ j‖L p(U ′′;R2) ≤ C(λ, p, r)M and ‖∇v̄ j‖L p(U ′′;R2×2) < C(λ, p, r)
1

j
. (3.39)

Step 2: Asymptotic behavior of (v̄ j ) j . In view of (3.39), we find that there
exists a (non-relabeled) subsequence of (v̄ j ) j such that

v̄ j → d in W 1,p(U ′′;R2) and v̄ j → d in C0(U ′′;R2). (3.40)

for some constant vector d ∈ R
2. In this final step, we prove that |d| is close to 1

and close to 0 if |U ′ \U ′′| and r are sufficiently small, which is a contradiction.
Step 2a: The length |d| is small. First, we exploit (3.31) to compute that

0 =
∫
U ′∩ε j Ystiff

v j dx =
∫
U ′′∩ε j Ystiff

v j dx +
∫

(U ′\U ′′)∩ε j Ystiff
v j dx

=
∫
U ′′∩ε j Ystiff\ε j Br

v̄ j dx +
∫
U ′′∩ε j Ystiff∩ε j Br

v j dx +
∫

(U ′\U ′′)∩ε j Ystiff
v j dx

=
∫
U ′′∩ε j Ystiff

v̄ j dx +
∫
U ′′∩ε j Ystiff∩ε j Br

v j − v̄ j dx +
∫

(U ′\U ′′)∩ε j Ystiff
v j dx .

(3.41)

The first term in (3.41) converges to |Ystiff ||U ′′|d due to (3.40) as j → ∞. We
handle the third term in (3.41) via Hölder’s inequality and (3.37),

∣∣∣
∫

(U ′\U ′′)∩ε j Ystiff
v j dx

∣∣∣ ≤ ‖v j‖L p(U∩ε j Ystiff ;R2)|U ′ \U ′′|1− 1
p ≤ M |U ′ \U ′′|1− 1

p

(3.42)



Arch. Rational Mech. Anal. (2024) 248:46 Page 45 of 55 46

The second term in (3.41) can be similarly estimated:

∣∣∣
∫
U ′′∩ε j Ystiff∩ε j Br

v j − v̄ j dx
∣∣∣ ≤

∫
U ′′

|v j |1ε j Ystiff1ε j Br dx +
∫
U ′′

|v̄ j |1ε j Br dx

≤ M |U ′′ ∩ ε j Br |1−
1
p +

∫
U ′′

|v̄ j |1ε j Br dx . (3.43)

We shall also point out that |U ′′ ∩ ε j Br | → |U ′′|πr2 and
∫
U ′′ |v̄ j |1ε j Br dx →

|d||U ′′|πr2 as j → ∞.
In conclusion, we first select for arbitrary δ > 0 the set U ′′ � U ′ large enough

that (3.42) is smaller than δ. Then, we select r small enough and subsequently j
sufficiently large in such a way that (3.43) is also bounded by δ, and that

∣∣∣
∫
U ′′∩ε j Ystiff

v̄ j dx − |Ystiff ||U ′′|d
∣∣∣ ≤ δ

for all such j . These choices then produce

|Ystiff ||U ′′||d| ≤ 3δ. (3.44)

Step 2b: Bound of |d| from below. The convergence (3.40) yields that

‖v̄ j‖L1(U ′′;R2) → |U ′′||d| as j → ∞.

On the other hand, this norm can be estimated from below by exploiting (3.39) and
(3.36):

‖v̄ j‖L1(U ′′;R2) ≥ ‖v̄ j‖L1(U ′′∩ε j Ystiff\ε j Br ;R2) = ‖v j‖L1(U ′′∩ε j Ystiff\ε j Br ;R2)

= ‖v j‖L1(U ′∩ε j Ystiff\ε j Br ;R2) − ‖v j‖L1((U ′\U ′′)∩ε j Ystiff\ε j Br ;R2)

= 1 − ‖v j‖L1(U ′∩ε j Ystiff∩ε j Br ;R2) − ‖v j‖L1((U ′\U ′′)∩ε j Ystiff\ε j Br ;R2)

= 1 − ‖v j‖L1(U ′′∩ε j Ystiff∩ε j Br ;R2) − ‖v j‖L1((U ′\U ′′)∩ε j Ystiff ;R2).

(3.45)

The last two terms in (3.45) are handled via (3.37) and Hölder’s inequality, namely

‖v j‖L1(U ′′∩ε j Ystiff∩ε j Br ;R2) ≤ M |U ′′ ∩ ε j Br |1−
1
p ,

and

‖v j‖L1((U ′\U ′′)∩ε j Ystiff ;R2) ≤ M |U ′ \U ′′|1− 1
p .

Similarly to Step 2a, we then find that |d −1| is very small which is a contradiction
to (3.44). This concludes the proof of this lemma. ��

Finally, we state a brief technical Lemma which ensures that (3.32) is satisfied
for a suitable sequence later on.
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Lemma 14. Let p > 2, and U ⊂ R
2 be a bounded Lipschitz domain and let

(vε)ε ⊂ W 1,p(U ;R2) be bounded and satisfy ‖vε‖L p(U∩εYstiff ;R2) ≥ a > 0. Then,
there exist U ′ � U and M > 0 such that

‖vε‖L p(U∩εYstiff ;R2) ≤ M‖vε‖L p(U ′∩εYstiff ;R2)

for every ε > 0.

Proof. Since the family (vε)ε is bounded in W 1,p(U ;R2), we find via Sobolev-
embeddings that (vε)ε is bounded inC0(U ;R2).WithUj := {x ∈ U : dist(x, ∂U ) >
1
j }, we estimate

∫
(U\Uj )∩εYstiff

|vε|p dx ≤ ‖vε‖p
C0(U ;R2)

|(U \Uj ) ∩ εYstiff | ≤ ‖vε‖p
C0(U ;R2)

|U \Uj |;

in particular, we find some j0 ∈ N such that we find on U ′ := Uj0 that

‖vε‖L p((U\U ′)∩εYstiff ;R2) ≤ a

2

for all ε > 0. We argue for the rest of the proof via contradiction. Assume that for
the set U ′ chosen above and every j ∈ N there exists v j := vε j such that

‖v j‖p
L p(U∩ε j Ystiff ;R2)

> j p‖v j‖p
L p(U ′∩ε j Ystiff ;R2)

= j p
(‖v j‖p

L p(U∩ε j Ystiff ;R2)
− ‖v j‖p

L p((U\U ′)∩ε j Ystiff ;R2)

)
.

We then find for every j > 1 that

a p ≤ ‖vε‖p
L p(U∩εYstiff ;R2)

≤ j p

j p − 1
‖vε‖p

L p((U\U ′)∩εYstiff ;R2)
≤ j p

j p − 1

a p

2p
,

which is a contradiction if j is large enough. ��

3.2. Macroscopic Deformation Behavior

With technical tools and results about the local behavior in place, we are now
in a position to derive global effects. The next theorem serves as the compactness
result in Theorem 1 and is the analogon of Proposition 4 a) in the rigid case.

Proposition 15. (Criterion for limit deformations) Let p > 2, β > 2p + 2, and let
(uε)ε ⊂ A, cf. (1.1), be a sequence that satisfies

∫
�∩εYstiff

dist p(∇uε,SO(2)) dx ≤ Cεβ (3.46)

for a constant C > 0 independent of ε. If uε ⇀ u in W 1,p(�;R2) for some
u ∈ W 1,p(�;R2), then u is affine with ∇u ∈ K with K as in (1.8).
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Proof. Throughout this proof as well as the proof of Theorem 1, we work on
several nested compactly contained Lipschitz domains �0 := �,�1, . . . , �4 with
�i � �i−1 with i ∈ {1, . . . , 4}. For such sets, we define

Jε,i = {k ∈ Z
2 : �i ∩ ε(k + Y ) �= ∅} (3.47)

and observe that

�i ⊂
⋃

k∈Jε,i

ε(k + Y ) ⊂ �i−1

for sufficiently small ε > 0. For k ∈ Jε,1, let ε(k+ Z) be the union of ε(k+Y ) and
its eight neighboring cells, see (2.42), and note that ε(k+ Z) ⊂ � for ε sufficiently
small.

Step 1: Setup. Let �1 � � be an arbitrary bounded Lipschitz domain. We
briefly write

E1(ε, k) := ε(k + Y1), E2(ε, k) := ε(k − e1 + Y3),

E3(ε, k) := ε(k + e2 + Y1), E4(ε, k) := ε(k + Y3),

E ′(ε, k) :=
4⋃

i=1

Ei (ε, k) (3.48)

for k ∈ Z
2 and observe that

E3(ε, k) = E1(ε, k + e2) and E4(ε, k) = E2(ε, k + e1) for all k ∈ Z
2.

(3.49)

Since β > 2p + 2 > 2 we find that ‖ dist(∇uε,SO(2))‖p
L p(E ′(ε,k)) ≤ Cεβ ≤ δ0ε

2

with δ0 as in Lemma 10, and k ∈ Z
2 with ε(k + Z) ⊂ �. For all these k, we may

apply Lemma10 andRemark 9 forμ = 1−λ
λ

,ρ = λε, and the setsρE0 = ε(k+Y2),
ρEi = Ei (ε, k) for i ∈ {1, . . . , 4}, to obtain two rotations Rk

ε , S
k
ε ∈ SO(2) such

that

‖∇uε − Skε ‖L p(E1(ε,k)∪E3(ε,k);R2×2) + ‖∇uε − Rk
ε‖L p(E2(ε,k)∪E4(ε,k);R2×2)

≤ Cε
1
p ‖ dist(∇uε,SO(2))‖

1
2
L p(E ′(ε,k))

(3.50)

and

Skε e1 · Rk
εe1 ≥ −Cε

− 1
p ‖ dist(∇uε,SO(2))‖

1
2
L p(E ′(ε,k)) (3.51)

for a constant C > 0 independent of ε and k. On this basis, we define two auxiliary
piecewise constant maps Sε, Rε : � → SO(2) as

Sε :=
∑
k∈Jε,1

Skε1ε(k+Y ), and Rε :=
∑
k∈Jε,1

Rk
ε1ε(k+Y ). (3.52)
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Step 2: Strong convergence of rotations. We consider only (Sε)ε, the other
sequence can be dealt with analogously. Recalling (3.48), (3.49), and (3.50) we
find for x ∈ ε(k + Y ) and x̃ ∈ ε(k + e2 + Y ) that

|Sε(x) − Sε(x̃)|p = Cε−2‖Skε − Sk+e2
ε ‖p

L p(ε(k+e2+Y1);R2×2)

≤ Cε−2(‖Skε − ∇uε‖p
L p(E3(ε,k);R2×2)

+ ‖Sk+e2
ε

− ∇uε‖p
L p(E1(ε,k+e2);R2×2)

)

≤ Cε−1‖ dist(∇uε,SO(2))‖
p
2
L p(E ′(ε,k)∪E ′(ε,k+e2))

.

Analogously (and with an additional triangle inequality), we obtain for any x̃ ∈
ε(k + Z) that

|Sε(x) − Sε(x̃)|p ≤ Cε−1‖ dist(∇uε,SO(2))‖
p
2

L p
(⋃

e∈I E ′(ε,k+e)
) (3.53)

with a constantC > 0 independent of ε, see (2.42) for the definition of I .We choose
now an arbitrary ξ ∈ R

2 with |ξ | ≤ 1
2 dist(�1, ∂�) and we set mε = �|ξ |∞

ε
� with

|ξ |∞ := max{|ξ1|, |ξ2|}. Now, selectmε +1 points 0 = ξ (0), ξ (1), . . . , ξ (mε) = ξ in
such a way that |ξ ( j+1) − ξ ( j)|∞ ≤ ε for every j = 0, . . . ,mε −1, which produces
a piecewise straight path from the origin to ξ with maximal step length ε. With the
help of a telescoping sum argument and the discrete Hölder’s inequality, we obtain

|Sε(x) − Sε(x + ξ)|p ≤ mp−1
ε

mε−1∑
i=0

|Sε(x + ξ ( j)) − Sε(x + ξ ( j+1))|p.

Integrating this estimate on ε(k+Y ) and combining the result with (3.53) generates
∫

ε(k+Y )

|Sε(x) − Sε(x + ξ)|p dx

≤ Cεmp−1
ε

mε−1∑
i=0

‖ dist(∇uε,SO(2))‖
p
2

L p
(⋃

e∈I E ′(ε,k+�ξ ( j)�+e)
)

with �ζ� := (�ζ1�, �ζ2�) for ζ ∈ R
2. Summing over all k ∈ Jε,1 and considering

that mε ≤ C |ξ |
ε

+ 1 as well (3.50) we derive

∫
�1

|Sε(x) − Sε(x + ξ)|p dx

≤ Cεmp−1
ε

mε−1∑
i=0

∑
k∈Jε,1

‖ dist(∇uε,SO(2))‖
p
2

L p
(⋃

e∈I E ′(ε,k+�ξ ( j)�+e)
)

≤ Cε−1mp
ε ‖ dist(∇uε,SO(2))‖

p
2
L p(�∩εYstiff )

≤ Cε
β
2 −1

( |ξ |
ε

− 1
)p ≤ C

(
|ξ |pε β

2 −p−1 + ε
β
2 −1

)
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for a constant C > 0 independent of ε. In light of Fréchét-Kolmogorov’s theo-
rem and the fact that β > 2p + 2, we conclude that (Sε)ε converges strongly in
L p(�1;R2×2) to a constant rotation S ∈ SO(2). We find analogously that (Rε)ε
converges strongly to some R ∈ SO(2) in L p(�1;R2×2). Moreover, we derive
from (3.51) and (3.46) that

Sε(x)e1 · Rε(x)e1 ≥ −Cε
−2+β
2p → 0 as ε → 0

since β > 2, which yields that Se1 · Re1 ≥ 0.
Step 3: Approximation of uε by piecewise affine functions. We recall w as in

(2.23), set ŵε : R2 → R
2, x �→ εw( x

ε
), and define

wε := ŵε +
∫

�1∩εYstiff
uε − ŵε dx . (3.54)

The goal is the prove that wε and uε are close to each other in the L p-sense on a
suitable large subset by comparing them on the soft and stiff components separately.
We first distinguish between two cases: if ‖wε −uε‖L p(�1;R2) → 0 as ε → 0, then
there is nothing to prove. Otherwise we find via Lemma 14, applied to vε = uε −wε

and U = �1, a subset �2 � �1 and M > 0 such that

‖vε‖L p(�1∩εYstiff ;R2) ≤ M‖vε‖L p(�2∩εYstiff ;R2). (3.55)

This subset can be chosen as close to �1 as we wish without changing the estimate
(3.55).

On each ε(k + Y1) for k ∈ Jε,2 we estimate

‖∇uε − ∇wε‖p
L p(ε(k+Y1);R2×2)

= ‖∇uε − S‖p
L p(ε(k+Y1);R2×2)

≤ C
(
‖∇uε − Sε‖p

L p(ε(k+Y1);R2×2)
+ ‖Sε − S‖p

L p(ε(k+Y1);R2×2)

)

≤ C

(
ε‖ dist(∇u,SO(2))‖

p
2
L p(E ′(ε,k)) + ‖Sε − S‖p

L p(ε(k+Y1);R2×2)

)
, (3.56)

and analogously on ε(k + Y3). A summation of these estimates over all k ∈ Jε,2 in
combination with (3.46) then produces

‖∇uε − ∇wε‖p
L p(�2∩εYstiff ;R2×2)

≤ C
(
ε

β
2 −1 + ‖Sε − S‖p

L p(�1;R2×2)
+ ‖Rε − R‖p

L p(�1;R2×2)

)
, (3.57)

where the latter two terms vanish in the limit due to Step 1. Now, let �3 � �2 be
another arbitrary bounded Lipschitz domain. In light of (3.55), we may apply the
Poincaré-type Lemma 12 to v = uε − wε, U = �2, and U ′ = �3, to obtain

‖uε − wε‖p
L p(�3∩εYstiff ;R2×2)

≤ C‖∇uε − ∇wε‖p
L p(�2∩εYstiff ;R2×2)

≤ C
(
ε

β
2 −1 + ‖Sε − S‖p

L p(�1;R2×2)

+‖Rε − R‖p
L p(�1;R2×2)

)
. (3.58)
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for a constant C > 0 independent of ε.
To produce a similar estimate on the soft components, we first choose yet

another bounded Lipschitz domain �4 � �3. We also observe that Y2 ⊂ Y1 + λe2
if λ ≥ 1

2 , which allows us to estimate
∫

ε(k+Y2)
|uε − wε|p dx ≤ C

∫
ε(k+Y1)

|uε − wε|p dx

+ C
∫

ε(k+Y1)
|(uε − wε)(x) − (uε − wε)(x + εe2)|p dx

≤ C
(‖uε − wε‖p

L p(ε(k+Y1);R2)
+ ε p‖∇uε − ∇wε‖p

L p(ε(k+Y1∪Y2);R2×2)

)
≤ C

(‖uε − wε‖p
L p(ε(k+Y1);R2)

+ ε p‖∇uε‖p
L p(ε(k+Y1∪Y2);R2×2)

+ ε p|ε(k + Y1 ∪ Y2)|
); (3.59)

in the case λ < 1
2 , it holds that Y2 ⊂ Y3 − λe2, which leads to a similar estimate.

Analogously, we find that
∫

ε(k+Y4)
|uε − wε|p dx ≤ C

(‖uε − wε‖p
L p(ε(k+Y1);R2)

+ ε p‖∇uε‖p
L p(ε(k+Y1∪Y4);R2×2)

+ ε p|ε(k + Y1 ∪ Y4)|
)

(3.60)

since Y4 ⊂ Y1 + λe1 if λ ≥ 1
2 . Summing (3.56), (3.59), (3.60) over all k ∈ Jε,4,

and combining the result with (3.58) then yields
∫

�4

|uε − wε|p dx ≤ C
(
ε

β
2 −1 + ‖Sε − S‖p

L p(�1;R2×2)
+ ‖Rε − R‖p

L p(�1;R2×2)

+ ε p‖uε‖p
W 1,p(�;R2)

+ ε p|�|)

≤ C
(
ε

β
2 −1 + ε p + ‖Sε − S‖p

L p(�1;R2×2)
+ ‖Rε − R‖p

L p(�1;R2×2)

)
,

with a constant C > 0 independent of ε > 0. This shows that uε and wε have the
same limit in L p(�4;R2). Sincewε converges to an affine functionw with gradient
∇w = F ∈ K , cf. (1.8), the limit function u satisfies ∇u = F ∈ K on �4.

An exhaustion argument proves the desired result. ��

3.3. Proof of Theorem 1

Finally, we give the proof of Theorem 1, which consists of verifying the lower
and upper bounds for the �-convergence result.

Proof of Theorem 1. Step 1: The lower bound. Assume that (uε)ε ⊂ L p
0 (�;R2)

converges strongly to u ∈ L p
0 (�;R2) and satisfies

lim
ε→0

Iε(uε) = lim inf
ε→0

Iε(uε) < ∞;

in this case, it holds that (uε)ε ⊂ A. Due to the lower bounds (1.4) and (1.3) forWsoft
and Wstiff , we find that (∇uε)ε is bounded in L p(�;R2). A direct application of
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Poincaré’s inequality on� yields the boundedness of (uε)ε inW 1,p(�;R2) as well
as uε ⇀ u in W 1,p(�;R2) up to the selection of a (non-relabeled) subsequence.
Moreover, Proposition 15 produces that u is affine with gradient ∇u = F ∈ K ,
cf. (1.8), in view of the lower bound (1.3).

From the proof of Proposition 15, we recall the five sets �4 � . . . � �1 �
�0 = � together with their index sets Jε,1, . . . , Jε,4 as in (3.47), the quantities
Sε, Rε as in (3.52) with limits S, R ∈ SO(2), as well as wε as in (3.54). Since W qc

is polyconvex, there exists a lower semicontinuous and convex function g : R2×2×
R → [0,∞] such that W qc(F) = g(F, det F). In light of Jensen’s inequality (see
[49, Lemma A.2]) for extended-valued functions, we estimate

Iε(uε) ≥
∫

�4∩εYsoft
Wsoft(∇uε) dx

≥
∫

�4∩εY2
W qc

soft(∇uε) dx +
∫

�4∩εY4
W qc

soft(∇uε) dx

≥
∑

i∈{2,4}
|�4 ∩ εYi | g

(
−
∫

�4∩εYi
(∇uε, det∇uε) dx

)
. (3.61)

We now want to exchange every uε by the easier piecewise affine function wε,
which is suitably close to uε. Since |�4 ∩ εYi | → |�4||Yi | > 0 as ε → 0, it
remains to show that

∣∣∣
∫

�4∩εYi
(∇uε, det∇uε) − (∇wε, det∇wε) dx

∣∣∣ → 0 (3.62)

as ε → 0 for i ∈ {2, 4}.
Lemma 8 applied toU = �2 andU ′ = �4 now generates a linear and continu-

ous operator L : W 1,p(�2 ∩ εYstiff ;R2)∩C0(�2 ∩ εYstiff ;R2) → W 1,p(�4;R2).
We then find that we may replace uε and wε in (3.62) by the continuous func-
tions w̃ε := L(wε|�2∩εYstiff

) and ũε := L(uε|�2∩εYstiff
) since the minors are Null-

Lagrangians. For the difference in the gradients, we compute

∣∣∣
∫

�4∩εYi
∇ũε − ∇w̃ε dx

∣∣∣ ≤ C‖∇ũε − ∇w̃ε‖L p(�4;R2×2)

≤ C‖uε − wε‖W 1,p(�2∩εYstiff ;R2) (3.63)

with a constant C > 0 independent of ε for i ∈ {2, 4}. As for the determinants, we
use that (wε)ε and (uε)ε are both bounded in W 1,p(�2;R2) to estimate
∣∣∣
∫

�4∩εYi
det∇ũε − det∇w̃ε dx

∣∣∣ ≤ C
(
‖∂1w̃ε‖L p′ (�4;R2)

‖∂2w̃ε − ∂2ũε‖L p(�4;R2)

+ ‖∂2ũε‖L p′ (�4;R2)
‖∂1w̃ε − ∂1ũε‖L p(�4;R2)

)

≤ C‖wε − uε‖W 1,p(�2∩εYstiff ;R2) (3.64)

with 1
p′ + 1

p = 1 and a constant C > 0 independent of ε, for i ∈ {2, 4}. By
combining (3.63) and (3.64) with (3.57), we verify (3.62).
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Considering the definition (3.54) of wε, we can now pass to the limit in (3.61),

lim inf
ε→0

Iε(uε) ≥
∑

i∈{2,4}
|�4||Yi | g

(
lim inf

ε→0
−
∫

�4∩εYi
(∇wε, det∇wε) dx

)

≥ |�4||Y2|g
(
(Se1|Re2), Se1 · Re1

)
+ |�4||Y4|g

(
(Re1|Se2), Se1 · Re1

)

= |�4| |Ysoft|
2

(
W qc

soft(Se1|Re2) + W qc
soft(Re1|Se2)

) ≥ |�4|Whom(F)

with∇u = F ∈ K . By taking the supremumover all compactly contained�4 � �,
we produce the desired estimate.

Step 2: The upper bound. The recovery sequence can be constructed exactly as
in the proof of Theorem 5. ��
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