Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

A variational theory for integral functionals involving finite-horizon fractional gradients

Titelangaben

Verfügbarkeit überprüfen

Cueto, Javier ; Kreisbeck, Carolin ; Schönberger, Hidde:
A variational theory for integral functionals involving finite-horizon fractional gradients.
In: Fractional calculus and applied analysis : an international journal for theory and applications. 26 (2023). - S. 2001-2056.
ISSN 1314-2224 ; 1311-0454

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (899kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s13540-023-00196-7

Kurzfassung/Abstract

The center of interest in this work are variational problems with integral functionals depending on nonlocal gradients with finite horizon that correspond to truncated versions of the Riesz fractional gradient. We contribute several new aspects to both the existence theory of these problems and the study of their asymptotic behavior. Our overall proof strategy builds on finding suitable translation operators that allow to switch between the three types of gradients: classical, fractional, and nonlocal. These provide useful technical tools for transferring results from one setting to the other. Based on this approach, we show that quasiconvexity, which is the natural convexity notion in the classical calculus of variations, gives a necessary and sufficient condition for the weak lower semicontinuity of the nonlocal functionals as well. As a consequence of a general Γ-convergence statement,we obtain relaxation and homogenization results. The analysis of the limiting behavior for varying fractional parameters yields, in particular, a rigorous localization with a classical local limit model

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Nonlocal variational problems; Fractional and nonlocal gradients; Nonlocal function spaces; Weak lower semicontinuity; Quasiconvexity; Γ-convergence; Homogenization; Localization
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis
DOI / URN / ID:10.1007/s13540-023-00196-7
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Walter de Gruyter
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:32411
Eingestellt am: 29. Aug 2023 09:50
Letzte Änderung: 22. Dez 2023 11:51
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32411/
AnalyticsGoogle Scholar