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Abstract
The center of interest in this work are variational problems with integral function-
als depending on nonlocal gradients with finite horizon that correspond to truncated
versions of the Riesz fractional gradient. We contribute several new aspects to both
the existence theory of these problems and the study of their asymptotic behavior.
Our overall proof strategy builds on finding suitable translation operators that allow
to switch between the three types of gradients: classical, fractional, and nonlocal.
These provide useful technical tools for transferring results from one setting to the
other. Based on this approach, we show that quasiconvexity, which is the natural con-
vexity notion in the classical calculus of variations, gives a necessary and sufficient
condition for the weak lower semicontinuity of the nonlocal functionals as well. As a
consequence of a generalΓ -convergence statement, we obtain relaxation and homoge-
nization results. The analysis of the limiting behavior for varying fractional parameters
yields, in particular, a rigorous localization with a classical local limit model.
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1 Introduction

Nonlocality has long been a recurring theme in the calculus of variations, appearing
in various facets and applications. When modeling phenomena in nature and technol-
ogy, nonlocal operators, whose values result from integrating over a neighborhood,
have become a popular alternative to differential operators. A main advantage of this
derivative-free approach is that it allows functions to be less regular and, therefore,
makes it possible to capture discontinuity effects, and also long-range interactions are
naturally included. In the context of mechanics, this is exploited in peridynamic mod-
eling [30, 38] or to cover fracture and cavitation of deformed elastic materials [4, 7].
From the analytical viewpoint, dealing with nonlocality brings along new mathemati-
cal challenges, since it is intrinsically opposed to the standard techniques for classical
variational problems. And yet, local and nonlocal problems can be closely intertwined:
while localization causes nonlocal features to vanish [8, 30, 31], they can, on the other
hand, arise from local ones e.g., through limit processes such as homogenization and
disrete-to-continuum passages [9, 12].

In a recent series of works, different authors have studied problems involving inte-
gral functionals that depend instead of usual gradients on fractional-order ones through
the Riesz fractional gradients [4, 27, 36, 37]. Even though the latter had appeared in
the literature before [26], Shieh & Spector brought it back into the spotlight in [36,
37] and discussed properties of the associated fractional Sobolev spaces, which are
equivalent to the Bessel potential spaces, see also [4, 15, 16, 27]. In contrast to the
standard fractional Sobolev spaces defined via Gagliardo semi-norms, these spaces
have a distributional character, and are, therefore, particularly well-suited for varia-
tional problems. Another asset is that the Riesz fractional gradient enjoys a unique
combination of desirable homogeneity and invariance properties as shown by Šilhavý
in [41], which makes it the natural choice of a fractional derivative among operators
with infinite interaction range. Motivated by mechanical models of hyperelastic mate-
rials, which call for operators on bounded domains with finite interaction, Bellido,
Cueto & Mora-Corral [6] recently proposed to consider nonlocal operators that result
from the Riesz fractional gradient by truncation with a suitable cut-off function. This
is the same setting we are adopting in the following.

Overall, this paper deals with variational integrals in the truncated framework of
[6], for which we contribute new insights into the existence theory of minimizers as
well as their asymptotic analysis. More precisely, the set-up is as follows: LetΩ ⊂ R

n

be a bounded open set, s ∈ (0, 1) the fractional-order parameter, δ > 0 the horizon,
which stipulates the maximal length scale of the interaction distance between points,
and Ωδ = Ω + B(0, δ) the nonlocal closure of Ω .

We consider functionals of the form

F(u) =
∫

Ω

f
(
x, u(x), Ds

δu(x)
)
dx, (1.1)

where the integrand function f : Ω × R
m × R

m×n → R is Carathéodory with
standard p-growth and p-coercivity for some 1 < p < ∞ and Ds

δu is the truncated
Riesz fractional gradient (see (1.3) below) for functions u in a suitable linear subspace

123



A variational theory for integral functionals involving...

of L p(Ωδ; R
m). This function space, which is called Hs,p,δ(Ω; R

m) and introduced
in Definition 2, is defined in analogy to the classical Sobolev spaces by requiring
that the nonlocal gradient is p-integrable. In addition, we assume volumetric-type
boundary conditions by prescribing complementary values in a tubular neighborhood
or collar of radius 2δ around Ω; in the basic case of zero complementary values, we
write Hs,p,δ

0 (Ω; R
m) for the set of functions admissible for (1.1).

It remains to specify the nonlocal gradient Ds
δu.WithGρ a general nonlocal gradient

with kernel ρ, that is,

Gρu(x) =
∫
Rn

u(x) − u(y)

|x − y|
x − y

|x − y|ρ(x − y) dy, (1.2)

whenever the integral exists for a function u : R
n → R, we first recall that the Riesz

fractional gradient is defined as the nonlocal gradient with the Riesz potential kernel
I1−s , i.e.,

Dsu ∝ GI1−s u with I1−s ∝ 1

| · |n+s−1 .

To introduce the truncated version, let us consider a certain smooth, radial cut-off
function wδ : R

n → [0,∞) supported in a ball of radius δ around the origin. Then,

Ds
δu = Gρs

δ
u with ρs

δ ∝ wδ I1−s . (1.3)

Throughout the paper, we refer to Ds
δ simply as nonlocal gradient to keep the terminol-

ogy short. For more details on these definitions of nonlocal and fractional gradients,
we refer the reader to Section 2.2. Alternative choices for the kernel function in (1.2)
can be found in the literature, for example, kernels defined on half-balls [25, 28], and
variable horizon kernels [19, 39, 40].

Our methodology for proving the results about the functionals (1.1) builds sub-
stantially on their relation with classical functionals with a dependence on the usual
gradient, namely

v �→
∫

Ω

f (x, v(x),∇v(x)) dx, (1.4)

and also the relation with the fractional variational integrals

u �→
∫
Rn

f (x, u(x), Dsu(x)) dx (1.5)

provides useful insights. To set a foundation for a comparison ofF with (1.4) and (1.5),
we discuss the connection between the three differential operators

classical gradient ∇, fractional gradient Ds , nonlocal gradient Ds
δ ,
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Fig. 1 Illustration of the relations between classical, fractional, and nonlocal gradients, which enable the
transfer of results between the corresponding settings. † When I1−s ∗ u is well-defined

and the associated Sobolev-type function spaces

W 1,p(Rn), Hs,p(Rn), Hs,p,δ(Rn),

respectively; for an illustrative overview, see Figure 1.
Fractional vs. classical: For smooth compactly supported functions ϕ ∈ C∞

c (Rn),
it is by now well-known that

Dsϕ = ∇(I1−s ∗ ϕ) and ∇ϕ = Ds(−Δ)
1−s
2 ϕ, (1.6)

where I1−s is the Riesz potential and (−Δ)
1−s
2 is the fractional Laplacian of order

1 − s, see e.g., [36, 41]. In [27, Proposition 3.1], two of the authors extended these
identities to the setting of Sobolev and fractional Sobolev functions, showing that for
any u ∈ Hs,p(Rn), there exists a v ∈ W 1,p

loc (Rn) such that ∇v = Dsu, and for every
u ∈ Hs,p(Rn), one can find a v ∈ W 1,p(Rn) with Dsu = ∇v. The latter follows
immediately from the observation that (−Δ)1−s/2 : W 1,p(Rn) → Hs,p(Rn) is a
bounded linear operator. This way, one can translate from the fractional gradient to
the classical one and vice-versa, up to a gap related to an issue of local integrability.
For a similar statement in the space of fractional BV -functions, we refer to [16,
Lemma 3.28].

Nonlocal vs. classical: Providing analogous translation formulas between the non-
local and classical setting is one of the major steps in the analysis of this paper. The
fact that Ds

δu is defined over a bounded domain brings about some technical compli-
cations compared with Dsu; for instance, as opposed to Dsu, the operator Ds

δu is no
longer homogeneous and it does not enjoy a semigroup property, which the fractional
one inherits from its relationship with the Riesz potential. The foundations for finding
a suitable replacement for the generalization of (1.6), were laid by Bellido, Cueto &
Mora-Corral [6] (see also [7]). They identified an integrable finite-horizon counterpart
of the Riesz potential kernel, called Qs

δ , which provides one of the directions of the
translation mechanism for smooth functions. For the other direction, we heuristically
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invert the convolution with Qs
δ in Fourier space, i.e., we consider the operator

Ps
δ ϕ =

(
ϕ̂

Q̂s
δ

)∨

for any Schwartz function ϕ. This operator can be considered as an analogue of the
fractional Laplacian of order (1 − s)/2 in the nonlocal framework. Another way of
interpreting Ps

δ ϕ is as the convolution of the gradient of ϕ with the kernel from the
nonlocal fundamental theorem of calculus in [6, Theorem 4.5], see Remark 4d)

Here, we prove that the convolution with Qs
δ and Ps

δ can both be extended to
the Sobolev spaces in such a way that they are each other’s inverses. This gives a
perfect isomorphism between Hs,p,δ(Rn) and W 1,p(Rn) with the property that for
any u ∈ Hs,p,δ(Rn) and v ∈ W 1,p(Rn)

Ds
δu = ∇(Qs

δ ∗ u) and ∇v = Ds
δPs

δ v, (1.7)

see Theorem 2 and the discussion thereafter. It is noteworthy that in the fractional case
there is no such isomorphism, since the Riesz potential is only locally integrable as
opposed to Qs

δ .
Fractional vs. nonlocal: A comparison between the kernels Qs

δ and I1−s , where
Rs

δ denotes their difference, gives us a basic and direct way for switching between the
fractional and nonlocal setting. Indeed, we show in Section 2.5, that

Ds
δu = Dsu + ∇Rs

δ ∗ u, (1.8)

for all u ∈ Hs,p,δ(Rn) = Hs,p(Rn), where ∇Rs
δ ∈ L1(Rn) ∩ C∞(Rn).

Having the translation mechanism of (1.7) and (1.8) at hand paves the way for shift-
ing results between the three variational settings. Note, however, that not all results can
be directly carried over, since boundary conditions are not preserved in the translation
procedure and problems involving both the function and its nonlocal gradient require
additional techniques. Here, we list and discuss the main contributions of this paper
to the existence and asymptotic analysis of the functionals F in (1.1):

(1) Characterization of weak lower semicontinuity of F . One of the crucial steps to
conclude the existence of minimizers of integral functionals, like F or those in (1.4)
or (1.5), via the direct method, is to establish weak lower semicontinuity. A well-
known fundamental result from the vectorial calculus of variations with roots in the
1950s states that, for the functionals (1.4), quasiconvexity (in the sense of Morrey)
regarding the third variable of f is necessary and sufficient for weak lower semicon-
tinuity in W 1,p(Ω; R

m), see [1, 29, 32, 33]. In the fractional setting (1.5), the efforts
are more recent. After convexity [36] and polyconvexity [4] had been identified as
sufficient conditions for weak lower semicontinuity in Hs,p

0 (Ω; R
m), the problem of

characterization was solved in [27, Theorem 1.1]. Interestingly, the correct condition
on f is the same as in the local case, namely quasiconvexity.
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We complement the picture in Theorem 5, by proving that, altogether, quasicon-
vexity is the intrinsic convexity notion in all three situations. In fact,

F is weakly lower semicontinuous in Hs,p,δ
0 (Ω; R

m) if and only if

f (x, z, ·) is quasiconvex for a.e. x ∈ Ω−δ and all z ∈ R
m; (1.9)

note that, due to a boundary layer effect, which yields even strong L p-convergence of
weakly convergent sequences in Hs,p,δ

0 (Ω; R
m), quasiconvexity is not required in the

collar. Moreover, we introduce a nonlocal notion of quasiconvexity defined through
testing with nonlocal gradients that turns out to be equivalent with quasiconvexity,
cf. Remark 8.

The proof of (1.9) exploits the parallels between the nonlocal and fractional gradient
in their relation to the standard one (cf. (1.7) and (1.6)) by using similar arguments
and techniques as in [27]. An alternative proof strategy that reduces (1.9) directly to
the statement of [27, Theorem 1.1] via (1.8) is also possible, as we demonstrate under
simplified assumptions.

(2)Variational convergence, homogenizationand relaxation.Considering sequences
of nonlocal functionals {F f j } j∈N as in (1.1) with specific integrand functions f j , we
study their asymptotic behavior as j → ∞. The intention of finding a versatile method
that makes Γ -convergence (see [13, 18]) accessible to a number of cases and applica-
tions motivates the statement of Theorem 6. If we denote the counterparts ofF f j with
dependence on classical gradients defined on W 1,p(Ω−δ; R

m) by I f j , it says that the
convergence of {I f j } j∈N to a Γ -limit I f∞ as j → ∞ along with the pointwise con-
vergence of the integrals over the collar, L p(Ωδ; R

m×n) � V �→ ∫
Ω\Ω−δ

f j (x, V ) dx
yields

Γ - lim
j→∞F f j = F f∞;

note that all Γ -limits are taken with respect to the strong L p-topology.
To demonstrate how this observation can help to carry various Γ -convergence

results in the literature from the local to the nonlocal setting, we choose homoge-
nization theory as a specific case. Indeed, Corollary 3 shows that the fundamental
Γ -limit of [11, 34], where the homogenized functional is again of integral form with
integrand determined by a multi-cell formula, gives rise to a new homogenization
limit for problems involving nonlocal gradients. As an immediate consequence of this
homogenization, one can obtain relaxation of nonlocal functions F , that is, a repre-
sentation for their lower semicontinuous envelopes. In the case of a homogeneous
integrand f , the latter arises from the quasiconvexification of f on Ω−δ , while f
remains unchanged in Ω \ Ω−δ , see Corollary 4.

(3) Asymptotics for varying fractional order and localization. It is a natural question
to investigate the dependence of our nonlocal variational problems, in particular, their
minimizers and minima, on the fractional order s ∈ (0, 1); for an analogous study for
functionals of the type (1.5), see [5]. To this end, we take functionals as in (1.1), with
f independent of the second variable and quasiconvex in the third one, and highlight
the dependence of s with a subscript index Fs . The functional F1 can be defined in
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the same way with D1
δu := ∇u the classical gradient and F0, after extension of the

definition in (1.3) to s = 0, lives on L p(Ωδ; R
m).

The main result in this context is Theorem 6, which says the following:

The sequence {Fs}s Γ -converges to Fs′ as s → s′ ∈ [0, 1];
since sequential compactness of bounded-energy sequences holds strongly in
L p(Ω; R

m) when s′ ∈ (0, 1] and weakly in L p(Ω; R
m) if s′ = 0, it is natural to

state the Γ -convergence results regarding the strong and weak topology, respectively,
see Lemma 9. We point out that the limit s → 1 provides a localization statement,
and as such, establishes another interesting connection between classical local and
nonlocal theories.

The proof of the above-mentioned compactness for bounded-energy sequences in
nonlocal spaces of different order involves, besides the continuous dependence of the
nonlocal gradient Ds

δu on s (see Lemma 7), also a new technical tool that is worth
mentioning in its own right. This is the nonlocal Poincaré inequality with a constant
independent of the fractional order presented in Theorem 4; we refer to recent progress
on nonlocal Poincaré-type inequalities, for example, in problems involving radial
kernels [6, 20] or asymmetric and inhomogeneous kernels [23, 25]. The difficulty in
establishing a parameter-independent bound is the fact that the kernel in the nonlocal
fundamental theorem of calculus from [6, Theorem 4.5] is implicitly defined via a
Fourier transform, which makes it hard to isolate the dependence on s in the proof
of the Poincaré inequality from [6, Theorem 6.2]. Instead, we utilize a fine analysis
of the decay of the Fourier transform of Qs

δ , an application of the Mihlin-Hörmander
multiplier theorem and an extension of the nonlocal fundamental theorem to the case
s = 0 (see Proposition 2) to prove the Poincaré inequality with an s-independent
constant.

Note that besides the above localization result for s → 1, a different type of
localization could be obtained in the limit of vanishing horizon, i.e., for δ → 0.
Indeed, such a Γ -convergence statement for integral functionals depending on a class
of closely related nonlocal gradients is already proven in [31], yielding a classical local
model in the limit. However, it remains an interesting open problem for the future to
prove the required equi-compactness in order to deduce the convergence ofminimizers.
For readers interested in localization results in the context of other nonlocal variational
problems, there is a broad literature available; we refer e.g. to [2, 8, 10], which discuss
double-integrals that depend on difference quotients, convolution-type integrals, and
functionals arising from models in peridynamics, respectively.

This manuscript is organized as follows. We begin in Section 2 with notations and
a detailed introduction to our set-up and nonlocal calculus. Moreover, we collect and
establish the relevant technical tools, especially, the connections between classical,
nonlocal and fractional gradients along with the corresponding translation keys. Sec-
tion 3 deals then with the asymptotics of the nonlocal gradient, and we derive as a
main application a Poincaré inequality with a constant uniform in s, which opens
the way for compactness results for sequences in nonlocal spaces of different order.
The variational results for the nonlocal integral functionals are proven from Section 4
onwards, based on the comparison with the classical and fractional setting. First, we
prove the characterization of weak lower semicontinuity in terms of quasiconvexity of
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the integrand and state an existence statement for minimizers of F (see Corollary 2)
based on it. In Section 5, we then provide a general Γ -convergence result, from which
homogenization and relaxation can be deduced as corollaries. Finally, we prove the
convergence of minimizers of the functionals {Fs}s for the limit s → s′ ∈ [0, 1] in
Section 6, showing, in particular, the localization to a classical local limit as s → 1.

2 Preliminaries and technical tools

The aim of this section is to introduce the notation and several important definitions
and tools regarding the nonlocal gradient and Sobolev spaces.

2.1 Notation

2.1.1 General notation

Unless mentioned otherwise, s ∈ (0, 1) and Y = (0, 1)n ⊂ R
n . We use R∞ to denote

R ∪ {∞}. We write |x | = (∑n
i=1 x

2
i

)1/2
for the Euclidean norm of a vector x =

(x1, · · · , xn) ∈ R
n and similarly, |A| for the Frobenius norm of a matrix A ∈ R

m×n .
The ball centered at x ∈ R

n and with radius ρ > 0 is denoted by B(x, ρ) = {y ∈
R
n : |x − y| < ρ} and the distance between x ∈ R

n and a set E ⊂ R
n is written as

d(x, E). For an open set Ω ⊂ R
n and δ > 0, we write Ωδ for its nonlocal closure,

that is,

Ωδ = Ω + B(0, δ) = {x ∈ R
n : d(x,Ω) < δ}.

The complement of a set E ⊂ R
n is indicated by Ec := R

n \ E and its closure by E .
The notation E � F for sets E, F ⊂ R

n means that E is compactly contained in F ,
i.e., E ⊂ F and E is compact. Let

1E (x) =
{
1 for x ∈ E,

0 otherwise,
x ∈ R

n,

be the indicator function of a set E ⊂ R
n .

LetU ⊂ R
n be an open set. The notation C∞

c (U ) symbolizes the smooth functions
ϕ : U → R with compact support in U ⊂ R

n . Our convention is that functions in
C∞
c (U ) are identified with their trivial extension to R

n by zero. Further, by C∞(Rn),
C0(R

n) and S(Rn) we denote the space of smooth functions, continuous functions
vanishing at infinity and Schwartz functions on R

n , respectively. We utilize multi-
index notation, in particular, we write ∂α for the partial derivative with respect to a
multi-index α ∈ N

n
0.

ByLipb(R
n),we refer to all the functionsψ : R

n → R that areLipschitz continuous
and bounded on R

n and we write Lip(ψ) for the Lipschitz constant of ψ .
The Lebesgue measure of U ⊂ R

n is written |U | and the convolution of two
functions u, v : R

n → R is denoted by u ∗ v. If one of the functions is vector-valued,
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the convolution should be understood componentwise. We use the common notation
for Lebesgue- and Sobolev-spaces, that is, L p(U ) for p ∈ [1,∞] is the space of
p-real-valued integrable functions on U with the norm

‖u‖L p(U ) =

⎧⎪⎨
⎪⎩

(∫
U

|u(x)| dx
)1/p

if p ∈ [1,∞),

ess supx∈U |u(x)| if p = ∞,

u ∈ L p(U ).

Moreover, W 1,p(U ) for p ∈ [1,∞] consists of all L p-functions on U with p-
integrable weak derivatives, endowed with the norm

‖u‖W 1,p(U ) = ‖u‖L p(U ) + ‖∇u‖L p(U ;Rn);

here ∇u stands for the weak gradient of u.
The functions that lie locally in L p and W 1,p are denoted by L p

loc(R
n) and

W 1,p
loc (Rn). Besides,W 1,p

0 (U ) stands for those functions inW 1,p(U )with zero bound-

ary value in the sense of the trace and W 1,∞
# (Y ) indicates the Y -periodic functions in

W 1,∞(Rn).
In general, the spaces defined above can be extended componentwise to vector-

valued functions. The target space is explicitly mentioned in the notation, like, for
example, L p(U ; R

m). Whenever convenient, we identify a function on a subset of
R
n with its trivial extension by zero. Finally, we use C to denote a generic constant,

which may change from one estimate to the next without further mention. If we wish
to indicate the dependence of C on certain quantities, we add them in brackets.

2.1.2 Riesz potential and Fourier transform

We recall the definition of Riesz potential. Given 0 < s < n, the Riesz potential kernel
Is : R

n \ {0} → R is

Is(x) = γ −1
n,s

1

|x |n−s
, (2.1)

where

γn,s = π
n
2 2s Γ ( s2 )

Γ ( n−s
2 )

with Γ denoting the Gamma function. For notational convenience, we also define
I1 : R \ {0} → R as

I1(x) = − 1

π
log(|x |) (2.2)
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when n = 1. The Riesz potential of a locally integrable function f is given via
convolution as

Is ∗ f (x) = 1

γn,s

∫
Rn

f (y)

|x − y|n−s
dy,

whenever the integral exists for a.e. x ∈ R
n .

Since we will also deal with the use of the Fourier transform, we clarify here the
notation we are going to use. For f ∈ L1(Rn), we define the Fourier transform of f
as

f̂ (ξ) =
∫
Rn

f (x) e−2π i x ·ξ dx ξ ∈ R
n .

Notice that this definition can also be used in the Schwartz space S(Rn; C), where it
defines an isomorphism. By continuity and duality extensions, it also defines isomor-
phism on the spaces L2(Rn; C) and in the space of tempered distributions S ′(Rn; C).
Moreover, the inverse Fourier transform is denoted by f ∨ and corresponds with
x �→ f̂ (−x). Notable references in Fourier analysis are [21, 24].

2.2 Nonlocal calculus and function spaces

In this section, we present the definition of the nonlocal gradient used throughout this
paper, introduce the naturally associated function spaces, and collect several auxiliary
results. A delicate issue is the choice of suitable boundary values, which is addressed
below in Section 2.3.

Inwhat follows, let δ > 0 andwδ : R
n → [0,∞) be a non-negative cut-off function

satisfying these hypotheses:

(H1) wδ is radial, i.e., there is a wδ : R → [0,∞) such that wδ(x) = wδ(|x |) for
x ∈ R

n ;
(H2) wδ is smooth and compactly supported in B(0, δ), i.e., wδ ∈ C∞

c (B(0, δ));
(H3) there is a constant b0 ∈ (0, 1) such that wδ = 1 on B(0, b0δ);
(H4) wδ is radially decreasing, that is, wδ(x) ≥ wδ(y) if |x | ≤ |y|.
In accordance with [6, Definition 3.1], we define the nonlocal gradient and divergence
for smooth functions as follows: For s ∈ [0, 1), the nonlocal gradient of ϕ ∈ C∞(Rn)

is given by

Ds
δϕ(x) = cn,s

∫
Rn

ϕ(x) − ϕ(y)

|x − y|
x − y

|x − y|
wδ(x − y)

|x − y|n+s−1 dy for x ∈ R
n, (2.3)

and the nonlocal divergence of ψ ∈ C∞(Rn; R
n) is

divsδ ψ(x) = cn,s

∫
Rn

ψ(x) − ψ(y)

|x − y| · x − y

|x − y|
wδ(x − y)

|x − y|n+s−1 dy for x ∈ R
n,

(2.4)
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with the scaling constant

cn,s := Γ
( n+s+1

2

)
πn/22−sΓ

( 1−s
2

) .

Note that the integral in (2.3) is absolutely convergent given that ϕ is in particular
locally Lipschitz continuous and wδ(·)/|·|n+s−1 ∈ L1(Rn) with compact support.
Moreover, the above definitions show that supp(Ds

δϕ) ⊂ supp(ϕ) + B(0, δ) and
Proposition 1 below establishes Ds

δϕ ∈ C∞(Rn; R
n). Analogous observations hold

for the nonlocal divergence.

Remark 1 a) Due to the radial symmetry of wδ from (H1), an equivalent way of
expressing Ds

δϕ for ϕ ∈ C∞(Rn) is as

Ds
δϕ(x) = lim

r↓0

∫
B(x,r)c

ϕ(y)dsδ (x − y) dy for x ∈ R
n, (2.5)

with

dsδ (x) = −cn,s
xwδ(x)

|x |n+s+1 for x ∈ R
n \ {0}. (2.6)

When x /∈ supp(ϕ), this allows us to write Ds
δϕ(x) = (dsδ ∗ ϕ)(x).

b) It is straightforward to check for the nonlocal gradient that it is translation and
rotation invariant, i.e.,

Ds
δ

(
ϕ(· + b)) = Ds

δϕ(· + b) and Ds
δ

(
ϕ(R ·)) = R−1Ds

δϕ(R ·)

for all ϕ ∈ C∞(Rn), b ∈ R
n and R ∈ O(n). The rotation invariance relies on the

radiality of wδ . If, in addition, wδ(·/λ) = wλδ(·) for all λ > 0, then Ds
δ is also

positively s-homogeneous in the sense that

Ds
δ

(
ϕ(λ ·)) = λs Ds

δ/λϕ(λ ·)

for all ϕ ∈ C∞
c (Rn) and λ > 0.

To put this observation in context, we remark that Šilhavý in [41] identified the
Riesz fractional gradient as the unique fractional derivative operator that is suitably
continuous, rotation and translation invariant and s-homogeneous. Hence, one can
view Ds

δ as a nonlocal derivative operator with finite interaction range that enjoys the
same desirable properties.

As recently shown in [6], the nonlocal gradient can be written as the convolution of
a certain integrable kernel with the classical gradient. To formulate this result, which is
in analogy to the representation of the Riesz fractional gradient as the Riesz potential
of the usual gradient, we first introduce for s ∈ [0, 1) the kernel

Qs
δ : R

n \ {0} → R, Qs
δ(x) = cn,s

∫ δ

|x |
wδ(t)

tn+s
dt . (2.7)
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Proposition 1 Let s ∈ [0, 1). It holds for every ϕ ∈ C∞(Rn) that

Ds
δϕ = Qs

δ ∗ ∇ϕ ∈ C∞(Rn).

In particular, when ϕ ∈ S(Rn) then Ds
δϕ ∈ S(Rn; R

n).

Proof The statement for ϕ ∈ C∞
c (Rn) and s ∈ (0, 1) is exactly [6, Proposition 4.3],

and the case s = 0 is proven analogously. Since any ϕ ∈ C∞(Rn) locally coincides
with a smooth function with compact support, the same holds for such functions.
Finally, since Qs

δ ∈ L1(Rn), the statement for Schwartz functions follows. ��
Remark 2 (Properties of Qs

δ) For easier referencing, we list here a few relevant prop-
erties of Qs

δ for s ∈ [0, 1) that will be used later in the paper. The details for s ∈ (0, 1)
can be found in [6, Lemma 4.2, Propositions 5.2 and 5.5], and the same arguments
extend also to the case s = 0.

(a) The kernel Qs
δ lies in L1(Rn)with supp(Qs

δ) ⊂ B(0, δ) and is radially decreasing.
(b) Since Qs

δ has compact support, its Fourier transform is analytic and thus smooth.
Moreover, Q̂s

δ is bounded, radial, and strictly positive.

The nonlocal gradient and divergence as defined in (2.3) and (2.4) act as dual
operators in the sense of integration by parts. While several versions of nonlocal
integration by parts for related fractional or nonlocal operators have been studied in
the literature [16, 31, 41], we employ here the following formula, stated for smooth
functions.

Lemma 1 (Nonlocal integration by parts formula) Let s ∈ [0, 1) and suppose that
ϕ ∈ C∞

c (Rn) and ψ ∈ C∞
c (Rn; R

n). Then,

∫
Rn

Ds
δϕ · ψ dx = −

∫
Rn

ϕ divsδ ψ dx .

Proof According to Proposition 1, it holds that Ds
δϕ = Qs

δ ∗ ∇ϕ = ∇(Qs
δ ∗ ϕ) ∈

C∞
c (Rn; R

n) and similarly, divsδ ψ = Qs
δ∗divψ ∈ C∞

c (Rn). Hence, wemay calculate

∫
Rn

Ds
δϕ · ψ dx =

∫
Rn

∇(Qs
δ ∗ ϕ) · ψ dx = −

∫
Rn

(Qs
δ ∗ ϕ) divψ dx

= −
∫
Rn

ϕ (Qs
δ ∗ divψ) dx = −

∫
Rn

ϕ divsδ ψ dx;

the second identity is due to classical integration by parts, while the third one follows
via Fubini’s theorem. ��

In light of this integration by parts formula, the definition in (2.3) can be extended
to a broader class of functions using a distributional approach. We will work with
functions defined on an open set Ω ⊂ R

n . As nonlocal boundary of this set, we
choose a volumetric type as is common in nonlocal models, considering a tubular
neighborhood or collar of radius δ > 0 around Ω . Precisely, Ωδ = Ω + B(0, δ) is the
nonlocal closure of Ω and Ωδ \ Ω plays the role of nonlocal boundary.
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Definition 1 (Weak nonlocal gradient) Let s ∈ [0, 1), δ > 0, Ω ⊂ R
n open and

u ∈ L1
loc(Ωδ). We say that v ∈ L1

loc(Ω; R
n) is the weak nonlocal gradient of u,

written as v = Ds
δu, if

∫
Ω

v · ψ dx = −
∫

Ωδ

u divsδ ψ dx for all ψ ∈ C∞
c (Ω; R

n).

Remark 3 In the case s = 0, it holds for each ϕ ∈ C∞(Rn) by (2.5) that

D0
δ ϕ(x) = lim

r↓0

∫
B(x,r)c

ϕ(y)d0δ (x − y) dy for x ∈ R
n,

with d0δ as in (2.6). The theory of singular integrals (see e.g., [24, Theorem 5.4.1])
implies that D0

δ can be uniquely extended to a continuous linear operator from L p(Rn)

to L p(Rn; R
n) when p ∈ (1,∞); indeed, one can easily verify that d0δ satisfies the

size and cancellation conditions [24, Eq. (5.4.1) and (5.4.3)], while the Hörmander
condition [24, Eq. (5.4.2)] follows from the stronger property

|∇d0δ | ≤ C

| · |n+1 ,

which holds due to ∇wδ = 0 in B(0, b0δ).
We therefore find for each u ∈ L p(Ωδ) (after extension to R

n by zero) that D0
δu ∈

L p(Ω; R
n) and

‖D0
δu‖L p(Ω;Rn) ≤ C‖u‖L p(Ωδ)

with C > 0 a constant independent of u. Note that via a density argument, D0
δu

coincides with the weak nonlocal gradient from Definition 1.

In analogy with the definition of the standard and fractional Sobolev spaces, it is
now quite natural to consider the space of L p-functions whose weak nonlocal gradient
is also an L p-function. Our default choice for the integrability parameters throughout
the manuscript is p ∈ (1,∞). Especially when dealing with compactness results,
weak convergence, and the coercivity of functionals, the reflexivity of the nonlocal
Sobolev spaces is essential. For the sake of generality, however, we introduce the
following spaces for the full range of integrability exponents p ∈ [1,∞] and extend
results to the cases p = 1 and p = ∞ whenever this is possible at moderate technical
expense.

Definition 2 (Nonlocal Sobolev spaces) Let s ∈ [0, 1), p ∈ [1,∞] and Ω ⊂ R
n be

open. We define the nonlocal Sobolev space Hs,p,δ(Ω) as

Hs,p,δ(Ω) := {u ∈ L p(Ωδ) : Ds
δu ∈ L p(Ω; R

n)},
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equipped with the norm

‖u‖Hs,p,δ(Ω) =
(
‖u‖p

L p(Ωδ)
+ ∥∥Ds

δu
∥∥p
L p(Ω;Rn)

) 1
p
.

The corresponding spaces of vector-valued functions Hs,p,δ(Ω; R
m) are defined com-

ponentwise.

In parallel with the classical Sobolev spaces, Hs,p,δ(Ω) is a Banach space and,
when p ∈ (1,∞), also reflexive. Moreover, a sequence {u j } j∈N ⊂ Hs,p,δ(Ω) con-
verges weakly to u in Hs,p,δ(Ω) for p ∈ (1,∞) if and only if u j⇀u in L p(Ωδ)

and Ds
δu j⇀Ds

δu in L p(Ω; R
n) as j → ∞. In view of Remark 3, it holds that

H0,p,δ(Ω) = L p(Ωδ) for p ∈ (1,∞) with an equivalent norm. Additionally, we
set

H1,p,δ(Rn) := W 1,p(Rn) with D1
δu := ∇u for u ∈ H1,p,δ(Rn), (2.8)

which provides a consistent notation for the range of fractional orders s ∈ [0, 1].
When we consider the whole space, i.e.,Ω = R

n , and s ∈ (0, 1), then by Lemma 5
the nonlocal Sobolev spaces ofDefinition 2 correspond to the fractional Sobolev spaces
Hs,p(Rn) consisting of L p-functions with weak fractional gradient in L p, which are
known to be equivalent to the Bessel potential spaces for p ∈ (1,∞) [15, 16, 27, 36];
in formulas,

Hs,p,δ(Rn) = Hs,p(Rn).

We point out that for s ∈ (0, 1) and p ∈ [1,∞), the Definition 2 is different
from how nonlocal Sobolev spaces are introduced in [6, Definition 3.3], where the
authors use the closure of C∞

c (Rn) functions under the norm in (2). However, both
definitions are equivalent for Lipschitz domains as the following density result shows.
It corresponds to a nonlocal version of theMeyers-Serrin theorem for classical Sobolev
spaces, and the proof, which is based on approximate extension, can be found in the
Appendix in Section 9.

Theorem 1 Let s ∈ [0, 1), p ∈ [1,∞) and letΩ ⊂ R
n be a bounded Lipschitz domain

or Ω = R
n. Then, for every u ∈ Hs,p,δ(Ω), there exists a sequence {ϕ j } j∈N ⊂

C∞
c (Rn) that converges (when restricted to Ωδ) to u in Hs,p,δ(Ω).

An important ingredient for the analysis of the nonlocal gradient are suitable ver-
sions of the fundamental theorem of calculus (FTC). For the case s ∈ (0, 1), this has
been proven in [6, Proposition 4.4]. Now we generalize it to s = 0 as well, which is
needed to obtain a nonlocal Poincaré inequality independent of the fractional param-
eter. The proof takes inspiration from the arguments in [6, Appendix].

Proposition 2 (Nonlocal FTC for s = 0) There is a function Wδ ∈ L∞(Rn; R
n) such

that every ϕ ∈ S(Rn) can be expressed as

ϕ = −RD0
δ ϕ + Wδ ∗ D0

δ ϕ,
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where R̂ψ(ξ) = iξ ·ψ̂(ξ)
|ξ | denotes the Riesz transform ofψ ∈ S(Rn; R

n) and Wδ ∗D0
δ ϕ

is the sum of the componentwise convolutions of Wδ and D0
δ ϕ.

Proof Consider the tempered distribution Zδ ∈ S ′(Rn; C
n), given by

〈Zδ, η〉 = lim
r↓0

∫
B(0,r)c

(
iξ

|ξ | − iξ

2π |ξ |2 Q̂0
δ (ξ)

)
η(ξ) dξ for η ∈ S(Rn).

Wemay decompose Zδ into the sum of another tempered distribution Yδ ∈ S ′(Rn; C
n)

given by

〈Yδ, η〉 = lim
r↓0

∫
B(0,r)c

1B(0,1)(ξ)
−iξ

2π |ξ |2 Q̂0
δ (0)

η(ξ) dξ for η ∈ S(Rn),

and the locally integrable function Xδ ∈ L1
loc(R

n; C
n),

ξ �→
(

iξ

2π |ξ |2
(

1

Q̂0
δ (0)

− 1

Q̂0
δ (ξ)

)
+ iξ

|ξ |

)
1B(0,1)(ξ)

+ iξ

|ξ |

(
1 − 1

2π |ξ |Q̂0
δ (ξ)

)
1B(0,1)c(ξ).

The inverse Fourier transform of Yδ corresponds to a bounded function; for the case
n ≥ 2, this is because Yδ agrees with an integrable function, whereas for the case
n = 1 this follows from [6, Lemma A.1b)]. Moreover, we can show that Xδ is
actually integrable. For the first term this follows from the fact that Q̂0

δ is smooth and
strictly positive, cf. Remark 2. For the second term, we use (8.3) to write for |ξ | ≥ 1

1 − 1

2π |ξ |Q̂0
δ (ξ)

= 1 − 1

1 + 2π |ξ |R̂0
δ (ξ)

= 2π |ξ |R̂0
δ (ξ)

1 + 2π |ξ |R̂0
δ (ξ)

,

which is integrable by Lemma 11. We conclude that Xδ also has a bounded inverse
Fourier transform.

All in all, we conclude that there is a Wδ ∈ L∞(Rn; R
n) such that

Ŵδ = Zδ.

Note that Wδ takes values in R
n as 〈Zδ, η(− ·)〉 = 〈Zδ, η〉 for η ∈ S(Rn). Finally,

using Proposition 1 for the Fourier transform of D0
δ ϕ, we have for ϕ, η ∈ S(Rn) and

ψ = −RD0
δ ϕ + Wδ ∗ D0

δ ϕ ∈ S ′(Rn) that
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〈ψ̂, η〉 =
∫
Rn

−iξ

|ξ | · ̂D0
δ ϕ(ξ)η(ξ) dξ + 〈Zδ

̂D0
δ ϕ, η〉

= lim
r↓0

∫
B(0,r)c

−iξ

2π |ξ |2 Q̂0
δ (ξ)

· ̂D0
δ ϕ(ξ)η(ξ) dξ

= lim
r↓0

∫
B(0,r)c

−iξ

2π |ξ |2 Q̂0
δ (ξ)

· Q̂0
δ (ξ)2π iξ ϕ̂(ξ)η(ξ) dξ =

∫
Rn

ϕ̂(ξ)η(ξ) dξ,

which proves ψ = ϕ ∈ S(Rn) after taking the inverse Fourier transform. ��

2.3 Complementary-value spaces

Our study of variational problems involving the nonlocal gradient is carried out on
affine subspaces of Hs,p,δ(Ω) satisfying a complementary-value condition. For Ω ⊂
R
n open and bounded, let

Ω−δ = {x ∈ Ω : d(x, ∂Ω) > δ}.

Whenever we work with the complementary-value spaces throughout the paper, we
assume implicitly that δ > 0 is small enough so that Ω−δ is non-empty, that is,
0 < δ < maxx∈Ω d(x, ∂Ω); for an illustration of Ω and its inner and outer collar, see
Figure 2. We define for s ∈ [0, 1) and p ∈ [1,∞),

Hs,p,δ
0 (Ω) = C∞

c (Ω−δ)
Hs,p,δ(Ω)

(2.9)

and for g ∈ Hs,p,δ(Ω) the complementary-value space

Hs,p,δ
g (Ω) = g + Hs,p,δ

0 (Ω).

In a similar vain, we set

H1,p,δ
0 (Ω) := C∞

c (Ω−δ)
W 1,p(Ωδ)

, (2.10)

which will be used to study the asymptotics s → 1.
In order to avoid confusion, we clarify that the notation used in this document for

Hs,p,δ
g (Ω) slightly differs from the one used in [6, 7], where the same spaces were

denoted by Hs,p,δ
g (Ω−δ).

When Ω−δ is a Lipschitz domain, these affine subspaces comprise exactly those
functions in Hs,p,δ(Ω) that have prescribed values in Ωδ \ Ω−δ . Indeed, for the case
s = 1, it is well-known that

H1,p,δ
0 (Ω) = {u ∈ W 1,p(Ωδ) : u = 0 a.e. in Ωδ \ Ω−δ},

whereas the case s ∈ [0, 1) is treated in the next statement, which we prove in the
Appendix in Section 9.
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Fig. 2 Illustration of the set Ω
with its nonlocal closure Ωδ , its
nonlocal boundary Ωδ \ Ω , and
the collar Ωδ \ Ω−δ of thickness
2δ, where complementary values
are prescribed

Proposition 3 Let s ∈ [0, 1), p ∈ [1,∞) and Ω ⊂ R
n be open and bounded such

that Ω−δ is a Lipschitz domain. Then,

Hs,p,δ
g (Ω) = {u ∈ Hs,p,δ(Ω) : u = g a.e. in Ωδ \ Ω−δ}.

It may be surprising at first glance that we prescribe values in a collar of width 2δ
around the boundary of Ω , yet, this choice leads to a natural treatment of the nonlocal
variational problems in this paper, as can be seen for instance from the Poincaré
inequality in [6, Theorem 6.2] and the Euler-Lagrange equations in [6, Theorem 8.2].

For a discussion of relevant properties and useful results on these function spaces,
like Poincaré inequalities and compact embeddings, we refer to [6, 7]. Apart from
those, there is the following Leibniz rule from [7, Lemma 3.2 and 3.3], which we will
use among other things to enforce complementary-values via cut-off procedures.

Lemma 2 (Nonlocal Leibniz rule) Let s ∈ [0, 1), δ > 0, p ∈ [1,∞], and Ω ⊂ R
n

open. If u ∈ Hs,p,δ(Ω) and χ ∈ C∞
c (Rn), then χu ∈ Hs,p,δ(Ω) with

Ds
δ(χu) = χDs

δu + Kχ (u),

where Kχ : L p(Ωδ) → L p(Ω; R
n) is the bounded linear operator given by

Kχ (u)(x) = cn,s

∫
B(x,δ)

u(y)
χ(x) − χ(y)

|x − y|n+s

x − y

|x − y|wδ(x − y) dy for x ∈ Ω,

and there is a C > 0 such that

‖Kχ (u)‖L p(Ω;Rn) ≤ CLip(χ)‖u‖L p(Ωδ).

Proof The statement for u ∈ C∞
c (Rn) with s ∈ (0, 1) and the bound for Kχ follow

immediately from [7, Lemma 3.2 and 3.3] (the arguments remain valid for unbounded
sets).We can extend it to u ∈ Hs,p,δ(Ω) via a distributional argument as in Lemma 12.
The case s = 0 can be proven analogously. ��

123



J. Cueto et al.

In a similar spirit, one obtains with a slight abuse of notation that

divsδ(χu) = χ divsδ u + Kχ (uᵀ) (2.11)

for u ∈ Hs,p,δ(Ω; R
n) and χ ∈ C∞

c (Rn); here ζᵀ indicates the transpose of a vector
ζ ∈ R

n .
As a consequence of the Leibniz rule above, we can prove that in complementary-

value spaces, weak convergence of nonlocal gradients improves to strong convergence
in the stripwhere the values are prescribed. The following result shows natural parallels
with [27, Lemma 2.12] in the context of Riesz fractional gradients.

Lemma 3 (Strong convergence in the collar) Let s ∈ (0, 1), p ∈ (1,∞), Ω ⊂ R
n

open and bounded, O ⊂ Ω open with Ω−δ � O, and g ∈ Hs,p,δ(Ω). If {u j } j∈N ⊂
Hs,p,δ
g (Ω) converges weakly to u in Hs,p,δ(Ω), then

Ds
δu j → Ds

δu in L p(Ω \ O; R
n).

Proof Due to linearity, it suffices to prove the statement for the special case u = 0
and g = 0. Let us consider therefore a sequence {u j } j∈N ⊂ Hs,p,δ

0 (Ω) with u j⇀0 in
Hs,p,δ(Ω). With χ ∈ C∞

c (O) a cut-off function with χ ≡ 1 on Ω−δ , we obtain that
u j = χu j for j ∈ N and u j → 0 in L p(Ωδ) as a consequence of [6, Theorem 7.3].
Hence, by Lemma 2,

‖Ds
δu j‖L p(Ω\O;Rn) = ‖Ds

δ(χu j )‖L p(Ω\O;Rn)

≤ ‖Ds
δ(χu j ) − χDs

δu j‖L p(Ω;Rn) = ‖Kχ (u j )‖L p(Ω;Rn) → 0,

as j → ∞, exploiting the continuity of Kχ : L p(Ωδ) → L p(Ω; R
n). ��

2.4 Connection between nonlocal and classical Sobolev spaces

One of the key tools for our analysis is the following proposition, which allows us
to switch between nonlocal and classical gradients and is the technical basis for an
effective translation mechanism. It is the counterpart of [27, Proposition 3.1], where
fractional gradients and their relation with classical ones are analyzed.

We first introduce the operator

Ps
δ : S(Rn) → S(Rn), ϕ �→

(
ϕ̂

Q̂s
δ

)∨
, (2.12)

which is well-defined since 1/Q̂s
δ is a smooth function with polynomially bounded

derivatives (cf. Remark 2 and [6, Eq. (29)]). Moreover, as a consequence of the Fourier
representation,

Ps
δ (Q

s
δ ∗ ϕ) = Qs

δ ∗ (Ps
δ ϕ) = ϕ for all ϕ ∈ S(Rn), (2.13)
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which implies, in particular, that Ds
δ(Ps

δ ϕ) = ∇(Qs
δ ∗ (Ps

δ ϕ)) = ∇ϕ. We now extend
these properties to the Sobolev spaces.

Theorem 2 (Translating between nonlocal and classical gradients) Let s ∈ (0, 1),
p ∈ [1,∞] and Ω ⊂ R

n be open. The following two statements hold:

(i) The operator Qs
δ : Hs,p,δ(Ω) → W 1,p(Ω), u �→ Qs

δ ∗ u is bounded and if
u ∈ Hs,p,δ(Ω), then v = Qs

δu satisfies ∇v = Ds
δu on Ω .

(ii) The operator Ps
δ in (2.12) can be extended to a bounded linear operator from

W 1,p(Rn) to Hs,p,δ(Rn) such that Ps
δ = (Qs

δ)
−1, i.e.,

Ps
δQs

δu = u for u ∈ Hs,p,δ(Rn) and Qs
δPs

δ v = v for v ∈ W 1,p(Rn);

in particular, if v ∈ W 1,p(Rn), then u = Ps
δ v satisfies Ds

δu = ∇v on R
n.

Proof Part (i): Let u ∈ Hs,p,δ(Ω), then v = Qs
δu ∈ L p(Ω) since Qs

δ ∈ L1(Rn). For
every ϕ ∈ C∞

c (Ω; R
n), we find that

∫
Ω

v div ϕ dx =
∫

Ωδ

u (Qs
δ ∗ div ϕ) dx

=
∫

Ωδ

u divsδ ϕ dx = −
∫

Ω

Ds
δu · ϕ dx,

where the first identity uses Fubini’s theorem, the second one follows from Proposi-
tion 1, and the third one is simply the definition of the weak nonlocal gradient. This
proves v ∈ W 1,p(Ω) with ∇v = Ds

δu on Ω . The boundedness of Qs
δ follows from

Young’s convolution inequality.
Part (ii): Since Ps

δ is the inverse of the mapping Qs
δ on S(Rn) (cf. (2.13)), it

is sufficient to prove that Qs
δ is boundedly invertible. Indeed, we can then find the

suitable extension by setting Ps
δ := (Qs

δ)
−1. SinceQs

δ is bounded by part (i), we only
need to prove bijectivity to deduce the statement via Banach’s isomorphism theorem.

Step 1: Injectivity. Suppose that Qs
δu = Qs

δ ∗ u = 0 for u ∈ Hs,p,δ(Rn). Then,
Ds

δu = ∇(Qs
δ ∗ u) = 0, and in particular,

∫
Rn

u divsδ ϕ dx = 0 for all ϕ ∈ C∞
c (Rn; R

n);

by density, this also holds for all ϕ ∈ S(Rn; R
n). By taking any ψ ∈ C∞

c (Rn; R
n)

and setting ϕ = Ps
δ ψ ∈ S(Rn; R

n), we obtain

0 =
∫
Rn

u divsδ ϕ dx =
∫
Rn

u divsδ Ps
δ ψ dx =

∫
Rn

u divψ dx .

Hence, u is constant. Together with Qs
δ ∗ u = 0, this shows that u = 0 and proves the

injectivity of Qs
δ .
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Step 2: Surjectivity. Take v ∈ W 1,p(Rn) and χ ∈ C∞
c (Rn) an even function with

χ ≡ 1 on B(0, 1). Define the functions ϕ1, ϕ2 ∈ S(Rn) by

ϕ1 = −χ∨ and ϕ2 =
(

χ

Q̂s
δ

+ (1 − χ)

(
1

Q̂s
δ

− |2π · |1−s

))∨
;

here, ϕ2 ∈ S(Rn) since

1

Q̂s
δ

− |2π · |1−s = −|2π · |1−s R̂s
δ

Q̂s
δ

in B(0, 1)c

in view of (8.3), and R̂s
δ agrees with a Schwartz function on B(0, 1)c by (8.4). Note

also that ϕ1 and ϕ2 are real-valued and even, since the same holds for their Fourier
transforms. Because (−Δ)

1−s
2 may be extended to a bounded linear operator from

W 1,p(Rn) to Hs,p(Rn) (cf. [27, Proposition 3.1 (i i)]) and Hs,p(Rn) = Hs,p,δ(Rn)

by Lemma 2.15 and Remark 5, we can define

w := (−Δ)
1−s
2 v + ϕ1 ∗ (−Δ)

1−s
2 v + ϕ2 ∗ v ∈ Hs,p,δ(Rn).

Using Fubini’s theorem and the duality for the fractional Laplacian (see e.g., [27,
Eq. (3.6)]), we find for ϕ ∈ C∞

c (Rn; R
n)

∫
Rn

w divsδ ϕ dx

=
∫
Rn

v
(
(−Δ)

1−s
2 divsδ ϕ + (−Δ)

1−s
2 (ϕ1 ∗ divsδ ϕ) + ϕ2 ∗ divsδ ϕ

)
dx

=
∫
Rn

v div ϕ dx,

where the last inequality follows from

(
(−Δ)

1−s
2 divsδ ϕ + (−Δ)

1−s
2 (ϕ1 ∗ divsδ ϕ) + ϕ2 ∗ divsδ ϕ

)∧
(ξ)

=
(
|2πξ |1−s + |2πξ |1−s ϕ̂1(ξ) + ϕ̂2(ξ)

)
Q̂s

δ(ξ)2π iξ · ϕ̂(ξ)

= 2π iξ · ϕ̂(ξ) = d̂iv ϕ(ξ).

We conclude that Ds
δw = ∇v, which means that Qs

δw − v ≡ c for some c ∈ R; if
p < ∞, then c = 0 since both Qs

δw and v lie in L p(Rn). Therefore, we obtain

Qs
δ

(
w − c

‖Qs
δ‖L1(Rn)

)
= v,

which shows the surjectivity of Qs
δ and finishes the proof. ��
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Remark 4 a) Note that the proof of the fractional version of (i) in [27, Proposi-
tion 3.1 (i)] has to deal with a technical difficulty that the Riesz kernel I1−s is
not integrable as opposed to Qs

δ . Therefore, the convolution of I1−s with an L p-
function for large p is not always well-defined, whereas Qs

δ can be convolved
with any L p-function. In particular, there is also no perfect identification between
Hs,p(Rn) and W 1,p(Rn) that turns fractional gradients into classical gradients as
for the nonlocal case in part (i i) above.

b) Regarding part (i i), when p < ∞ then the extension of Ps
δ can also be seen as

the unique extension via density. Moreover, if Ω is a Lipschitz domain, then any
v ∈ W 1,p(Ω) can be extended to a function in W 1,p(Rn), after which we can
apply the result to find a u ∈ Hs,p,δ(Ω) with Ds

δu = ∇v on Ω .
c) The proof of the surjectivity in part (i i) shows that Ps

δ v corresponds, up to a
constant, to

(−Δ)
1−s
2 v + ϕ1 ∗ (−Δ)

1−s
2 v + ϕ2 ∗ v,

for v ∈ W 1,p(Rn); when p < ∞, then the correspondence is even an identity,
given that there are no non-zero constants in L p(Rn).
As a particular consequence of this observation, along with the fact that the convo-
lution with a periodic function remains periodic, we observe that bothQs

δ and Ps
δ

preserve periodicity. Precisely, if Y denotes the unit cube (0, 1)n , and W 1,∞
# (Y )

and Hs,∞,δ
# (Y ) comprise all Y -periodic functions in W 1,∞(Rn) and Hs,∞,δ(Rn),

respectively, then there is a bijection between the gradients ofW 1,∞
# (Y )-functions

and the nonlocal gradients of Hs,∞,δ
# (Y )-functions.

d) For ϕ ∈ S(Rn), it holds that

Ps
δ ϕ(x) =

∫
Rn

V s
δ (x − y) · ∇ϕ(y) dy for x ∈ R

n, (2.14)

where V s
δ ∈ C∞(Rn\{0}) is the kernel from the nonlocal version of the fundamen-

tal theorem of calculus [6, Theorem 4.5]. Indeed, this follows directly from the
formula for the Fourier transform of V s

δ in [6, Theorem 5.9]. The representation
in (2.14) extends naturally to functions in W 1,p(Rn) with compact support, given
that V s

δ is locally integrable.
e) The translation procedure of Theorem 2 allows us to give an alternative proof for

the nonlocal Poincaré inequality in [6, Theorem 6.2]. Since Qs
δ maps Hs,p,δ

0 (Ω)

into W 1,p
0 (Ω), we infer from the classical Poincaré inequality that

‖u‖L p(Ω) = ‖Ps
δQs

δu‖L p(Ω) ≤ C‖Qs
δu‖

W 1,p
0 (Ω)

≤ C‖∇Qs
δu‖L p(Ω;Rn) = C‖Ds

δu‖L p(Ω;Rn),

for any u ∈ Hs,p,δ
0 (Ω) with a constant C > 0 depending on s, δ, p, and Ω .

We conclude this section with a compactness result that will be used below in the
proof of Theorem 5.
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Lemma 4 Let s ∈ (0, 1), p ∈ (1,∞) andΩ ⊂ R
n be open and bounded. If {v j } j∈N ⊂

W 1,p(Rn) is a bounded sequence, then {Ps
δ v j } j∈N (when restricted toΩδ) is relatively

compact in L p(Ωδ).

Proof Let χ ∈ C∞
c (Rn) with χ ≡ 1 on Ωδ and set R > 0 such that supp(χ) ⊂

B(0, R−δ). Since {Ps
δ v j } j is bounded in Hs,p,δ(Rn) by Theorem 2 (i i), the sequence

{χ(Ps
δ v j )} j∈N is bounded in Hs,p,δ

0 (B(0, R)) by Lemma 2. The relative compactness
of {χ(Ps

δ v j )} j∈N in L p(B(0, R)) now follows from [6, Theorem 7.3] and since χ ≡ 1
on Ωδ , the statement follows. ��
2.5 Connection between nonlocal and fractional gradients

After the comparison of the nonlocal gradients with classical weak gradients, let us
now discuss their connection with the Riesz fractional gradient. We start by recalling
that the nonlocal gradient is a truncated version of the latter.

In the following, let p ∈ [1,∞) and s ∈ (0, 1). The upcoming lemma presents
the equivalence between the nonlocal and fractional Sobolev spaces Hs,p(Rn) and
Hs,p,δ(Rn) and also a version with prescribed complementary values. To recall the
definition of the fractional and nonlocal complementary-value spaces, we have for
Ω ⊂ R

n open and bounded that Hs,p
0 (Ω) comprises all functions u ∈ Hs,p(Rn) such

that u = 0 a.e. in Ωc and Hs,p,δ
0 (Ω) is given as in (2.9). We mention that one of the

inclusions was already provided by [6, Proposition 3.5]. For the sake of the reader, we
show here a complete proof.

Lemma 5 It holds that

Hs,p(Rn) = Hs,p,δ(Rn) (2.15)

with equivalent norms, and

Ds
δu = Dsu + ∇Rs

δ ∗ u (2.16)

for all u ∈ Hs,p(Rn) = Hs,p,δ(Rn) with ∇Rs
δ ∈ C∞(Rn; R

n) ∩ L1(Rn; R
n) as

in (8.1). Moreover, for Ω ⊂ R
n open and bounded with Ω−δ Lipschitz, it holds that

Hs,p
0 (Ω−δ) = Hs,p,δ

0 (Ω),

with equivalent norms, and (2.16) holds for u ∈ Hs,p
0 (Ω−δ) = Hs,p,δ

0 (Ω) on Ω .

Proof Let ϕ ∈ C∞
c (Rn). Since by (8.2)

Ds
δϕ − Dsϕ = ∇Rs

δ ∗ ϕ,

we obtain the estimates

‖Dsϕ‖L p(Rn;Rn) ≤ ‖Ds
δϕ‖L p(Rn;Rn) + ‖∇Rs

δ‖L1(Rn;Rn)‖ϕ‖L p(Rn)

≤ C‖ϕ‖Hs,p,δ(Rn)
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and

‖Ds
δϕ‖L p(Rn;Rn) ≤ ‖Dsϕ‖L p(Rn;Rn) + ‖∇Rs

δ‖L1(Rn;Rn)‖ϕ‖L p(Rn)

≤ C‖ϕ‖Hs,p(Rn)

with a constantC > 0. In light of the density ofC∞
c (Rn) in Hs,p(Rn) and Hs,p,δ(Rn)

(see [27, Theorem 2.7] and Theorem 1), the identity (2.15) and (2.16) follow via
approximation. For the case of a bounded domain, we note that

Hs,p,δ
0 (Ω) = {u ∈ Hs,p,δ(Ω) : u = 0 a.e. in Ωδ \ Ω−δ}

since Ω−δ is Lipschitz (cf. Proposition 3). Observe also that for any u ∈ Hs,p,δ
0 (Ω)

its extension ū to R
n by zero lies in Hs,p,δ(Rn) with

‖ū‖L p(Rn) + ‖Ds
δ ū‖L p(Rn;Rn) = ‖u‖L p(Ω) + ‖Ds

δu‖L p(Ω;Rn),

since Ds
δ ū is simply the extension of Ds

δu by zero. Hence, we may identify

Hs,p,δ
0 (Ω) = {u ∈ Hs,p,δ(Rn) : u = 0 a.e. in (Ω−δ)

c},

after which the equality with Hs,p(Ω−δ) becomes obvious given (2.15). ��
Remark 5 We mention that it also holds that

Hs,∞(Rn) = Hs,∞,δ(Rn),

with equivalent norms and Ds
δu = Dsu + ∇Rs

δ ∗ u for u ∈ Hs,∞(Rn). This can be
proven via a distributional approach instead of utilizing density as above.

As already indicated in the introduction, Lemma 2.5 opens up a new proof strat-
egy for some of the results in this paper. Instead of exploiting well-known result for
problems involving classical gradients, one can resort to established findings in the
fractional setting. We illustrate this approach below by presenting an alternative proof
for the characterization of lower semicontinuity in Section 4, which follows as a corol-
lary of [27, Theorems 4.1 and 4.5]. An analogous reasoning could also be used, for
instance, to deduce the relaxation below in Corollary 4 from [27, Theorem 1.2]. Note
that the transfer of results between the nonlocal and fractional set-up also works in the
reverse direction, giving rise to analogues of the general Γ -convergence statement in
Theorem 6 and homogenization result of Corollary 3.

3 Asymptotics of the nonlocal gradient and applications

Our next goal is to study the localization of the nonlocal gradient as s → 1, and
more generally, to understand how the nonlocal gradient depends on the fractional
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parameter s. In particular, the findings in this section serve as necessary preparations
for proving the Γ -convergence of nonlocal integral functionals in Section 6.

We start by investigating the s-dependence of the convolution kernel Qs
δ from (2.7)

and its Fourier transform.

Lemma 6 Let ε > 0 and R > 0.

(i) The map [0, 1) → L1(Rn), s �→ Qs
δ is continuous with

lim
s→1

‖Qs
δ‖L1(Rn) = 1 and lim

s→1
‖Qs

δ‖L1(B(0,ε)c) = 0. (3.1)

(ii) The map [0, 1) → C(B(0, R)), s �→ Q̂s
δ is continuous with Q̂s

δ → 1 uniformly
on B(0, R) as s → 1.

Proof As for (i), we calculate first that for s ∈ [0, 1),

‖Qs
δ‖L1(Rn) = cn,s

∫
B(0,δ)

∫ δ

|x |
wδ(r)

rn+s
dr dx

= cn,s |∂B(0, 1)|
∫ δ

0

∫ δ

ρ

wδ(r)

rn+s
ρn−1 dr dρ

= cn,s |∂B(0, 1)|
∫ δ

0

wδ(r)

rn+s

∫ r

0
ρn−1 dρ dr

= cn,s
|∂B(0, 1)|

n

∫ δ

0

wδ(r)

rs
dr

= cn,s ωn

∫ δ

0

wδ(r)

rs
dr ,

(3.2)

where ωn denotes the volume of the unit ball in R
n . Since s �→ cn,s is continu-

ous on [0, 1), cf. [5, Lemma 2.4], it follows via Lebesgue’s dominated convergence
that ‖Qs

δ‖L1(Rn) depends continuously on s. Now, if {s j } j∈N ⊂ [0, 1) is a sequence
converging to s ∈ [0, 1), we can apply once again Lebesgue’s dominated conver-
gence theorem to find that Q

sj
δ → Qs

δ pointwise a.e. as j → ∞. Together with
lim j→∞‖Qsj

δ ‖L1(Rn) = ‖Qs
δ‖L1(Rn) as shown above, this implies Q

sj
δ → Qs

δ in
L1(Rn) for j → ∞.

To see the first convergence in (3.1), we observe that 1B(0,b0δ) ≤ wδ ≤ 1B(0,δ)
by (H3) and (H4), which gives

(b0δ)1−s

1 − s
≤

∫ δ

0

wδ(r)

rs
dr ≤ δ1−s

1 − s
, (3.3)

and exploit cn,s/(1 − s) → 1/ωn as s → 1 according to [5, Lemma 2.4]. The
localization of Qs

δ for s → 1 follows from a calculation similar to (3.2) and (3.3),
integrating instead over B(ε, δ) and using that cn,s/(1 − s) stays bounded as s → 1.
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The first part of (i i) can be deduced from the continuity of the map in (i) in
combination with the fact that the Fourier transform is a bounded linear operator from
L1(Rn) to C0(R

n; C).
Due to (3.1), the kernel Qs

δ behaves like a mollifier, satisfying

lim
s→1

‖Qs
δ ∗ ϕ − ϕ‖L∞(Rn) = 0 (3.4)

for all ϕ ∈ Lipb(R
n), where this convergence is uniform on bounded sets of Lipb(R

n).
Indeed,

‖Qs
δ ∗ ϕ − ϕ‖L∞(Rn)

≤ ‖(1B(0,ε)Q
s
δ) ∗ ϕ − ϕ‖L∞(Rn) + ‖Qs

δ‖L1(B(0,ε)c)‖ϕ‖L∞(Rn)

≤ εLip(ϕ)‖Qs
δ‖L1(B(0,ε))

+ (∣∣1 − ‖Qs
δ‖L1(B(0,ε))

∣∣ + ‖Qs
δ‖L1(B(0,ε)c)

) ‖ϕ‖L∞(Rn),

for any ε > 0. Considering now ϕξ (x) = e−2π iξ ·x for ξ ∈ B(0, R), we have

‖ϕξ‖L∞(Rn;C) + Lip(ϕξ ) ≤ 1 + 2π |ξ | ≤ 1 + 2πR,

so that by (3.4),

lim
s→1

Q̂s
δ(ξ) = lim

s→1
(Qs

δ ∗ ϕξ )(0) = ϕξ (0) = 1,

uniformly for ξ ∈ B(0, R). ��
The next lemma addresses the continuous dependence of the nonlocal gradient

and divergence on the fractional parameter in the case of smooth test functions with
compact support. Recall the notation D1

δu := ∇u.

Lemma 7 Let s ∈ [0, 1] and {s j } j∈N ⊂ [0, 1] a sequence converging to s. Then, it
holds for every ϕ ∈ C∞

c (Rn) and ψ ∈ C∞
c (Rn; R

n) that

D
s j
δ ϕ → Ds

δϕ and div
s j
δ ψ → divsδ ψ

uniformly on R
n as j → ∞.

Proof It suffices to focus on proving the convergence of the nonlocal gradient; the
argument for the divergence is an immediate consequence. If s < 1, we conclude
from Proposition 1, Young’s convolution inequality, and Lemma 6 (i) that

‖Dsj
δ ϕ − Ds

δϕ‖L∞(Rn;Rn) ≤ ‖Qsj
δ − Qs

δ‖L1(Rn)‖∇ϕ‖L∞(Rn;Rn) → 0 as j → ∞.

The case s = 1 follows immediately from (3.4), since ∇ϕ ∈ Lipb(R
n) allows us to

conclude that
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lim
j→∞‖Dsj

δ ϕ − ∇ϕ‖L∞(Rn;Rn) = lim
j→∞‖Qsj

δ ∗ ∇ϕ − ∇ϕ‖L∞(Rn;Rn) = 0.

��
Our approach to extending the previous results for smooth functions in a suitable

way to nonlocal Sobolev spaces, relies on the following estimate (see Corollary 1
below),

‖Ds
δu‖L p(Rn;Rn) ≤ C‖Dt

δu‖L p(Rn;Rn)

for all u ∈ C∞
c (Rn) and 0 ≤ s ≤ t ≤ 1, (3.5)

with a constant C > 0 depending only on n, p, δ. If t = 1, (3.5) simply follows from
Young’s convolution inequality

‖Ds
δu‖L p(Rn;Rn) ≤ ‖Qs

δ‖L1(Rn)‖∇u‖L p(Rn;Rn) ≤ C‖∇u‖L p(Rn;Rn), (3.6)

where we have exploited that ‖Qs
δ‖L1(Rn) is bounded by C uniformly in s as a con-

sequence of Lemma 6. If t = s, one can obviously take the constant to be 1. For the
other cases, we build on Fourier multiplier theory (see e.g., [24, Chapter 5]) and show
via the Mihlin-Hörmander theorem that the maps

ms
t : R

n → R, ξ �→ Q̂s
δ(ξ)

Q̂t
δ(ξ)

(3.7)

are L p-multipliers with uniformly bounded norms. This requires control on the decay
behavior of ms

t and its derivatives. The idea for deriving suitable bounds for large fre-
quencies is to compare Qs

δ with the well-known Riesz potential kernel I1−s (cf. (2.1))
and exploit the decay of the difference of their Fourier transforms uniformly in s (see
Lemma 11).

Lemma 8 The map ms
t : R

n → R from (3.7) with 0 ≤ s ≤ t < 1 is an L p-multiplier
for every p ∈ (1,∞) with multiplier norm independent of the parameters s, t .

Proof According to the Mihlin-Hörmander multiplier theorem, see e.g., [24, The-
orem 6.2.7], the statement follows immediately once these estimates have been
established: There exists a constant C > 0 depending only on n and δ such that
for every α ∈ N

n
0 with |α| ≤ n/2 + 1 and every 0 ≤ s ≤ t < 1,

|ξ ||α| ∣∣∂αms
t (ξ)

∣∣ ≤ C for all ξ ∈ R
n . (3.8)

The proof is split in two parts, where we distinguish bounds for large and small
frequencies. Note that in the following all the constants C, c > 0 are independent of
s, t .

Step 1: Bounds away from zero. In this step, we show that there is some R ≥ 1 such
that (3.8) holds for all |ξ | ≥ R. Since

Q̂s
δ(ξ) = |2πξ |−(1−s) + R̂s

δ(ξ) for |ξ | ≥ 1
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for any s ∈ [0, 1) by (8.3), we can express ms
t on B(0, 1)c as

ms
t (ξ) = Q̂s

δ(ξ)

Q̂t
δ(ξ)

= |2πξ |−(t−s) + rst (ξ) (3.9)

with

rst (ξ) := −|2πξ |−(t−s) R̂t
δ(ξ) + R̂s

δ (ξ)

|2πξ |−(1−t) + R̂t
δ(ξ)

.

Given t ≥ s, it is clear that

∂α
(|2πξ |−(t−s)) ≤ C |ξ |−|α| for |ξ | ≥ 1. (3.10)

Along with (8.4), one can estimate the denominator of rst and find some R ≥ 1 such
that for all ξ ∈ R

n with |ξ | ≥ R,

|2πξ |−(1−t) + R̂t
δ(ξ) ≥ |2πξ |−1 − c|ξ |−2 ≥ C |ξ |−1. (3.11)

If one takes the αth derivative of rst on B(0, R)c, the quotient rule gives rise to a
quotient whose denominator results from raising the denominator of rst to the power
2|α| and whose numerator is a product of R̂s

δ , R̂
t
δ and their derivatives with terms

bounded independently of s, t . We therefore obtain in view of (3.11), and again (8.4),
that

|∂αrst (ξ)| ≤ C |ξ |−2|α| ≤ C |ξ |−|α| for |ξ | ≥ R. (3.12)

The combination of (3.9), (3.10) and (3.12) then yields (3.8) on B(0, R)c.
Step 2: Local bounds. To show that (3.8) holds for |ξ | ≤ R, we observe first that,

as a consequence of Lemma 6 (i i) and the non-negativity of Q̂s
δ (cf. Remark 2), there

is a constant c > 0 such that

Q̂s
δ(ξ) ≥ c

for all ξ ∈ B(0, R) and all s ∈ [0, 1). Moreover, for any β ∈ N
n
0 with |β| ≤ n/2 + 1,

the estimate

‖(−2π i ·)βQs
δ‖L1(Rn) ≤ C‖Qs

δ‖L1(Rn)δ
|β| ≤ Cδ|β|,

where the last inequality follows in view of Lemma 6 (i), implies

∣∣∂β Q̂s
δ(ξ)

∣∣ ≤ Cδ|β| ≤ C for all ξ ∈ R
n and s ∈ [0, 1).
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To conclude, we use again the quotient rule to obtain

|ξ ||α| ∣∣∂αms
t (ξ)

∣∣ = |ξ ||α|
∣∣∣∣∣∂α

(
Q̂s

δ(ξ)

Q̂t
δ(ξ)

)∣∣∣∣∣ ≤ R|α|C
c2|α| = C for |ξ | ≤ R.

��
Wenowobtain the next corollary based on the previous lemma; recall the definitions

of H1,p,δ(Rn) and H1,p,δ
0 (Ω) in (2.8) and (2.10).

Corollary 1 Let 0 ≤ s ≤ t ≤ 1 and p ∈ (1,∞). If u ∈ Ht,p,δ(Rn), then u ∈
Hs,p,δ(Rn) and there is a constant C > 0 depending only on n, δ and p such that

‖Ds
δu‖L p(Rn;Rn) ≤ C‖Dt

δu‖L p(Rn;Rn). (3.13)

If Ω ⊂ R
n is open and bounded and u ∈ Ht,p,δ

0 (Ω), then u ∈ Hs,p,δ
0 (Ω) with

‖Ds
δu‖L p(Ω;Rn) ≤ C‖Dt

δu‖L p(Ω;Rn).

Proof The case t = 1 is covered by (3.6). For the other cases, we deduce from the
previous lemma that the map

Ms
t : S(Rn; R

n) → L p(Rn; R
n), v �→ (ms

t v̂)∨ =
(
Q̂s

δ

Q̂t
δ

v̂

)∨

can be extended to a bounded linear operator on L p(Rn; R
n) with

‖Ms
t v‖L p(Rn;Rn) ≤ C‖v‖L p(Rn;Rn) (3.14)

for all v ∈ L p(Rn; R
n), where C > 0 is a constant independent of s, t . For ϕ ∈

C∞
c (Rn), we also observe using Proposition 1 that

Ms
t D

t
δϕ = Ms

t (Q
t
δ ∗ ∇ϕ) =

(
Q̂s

δ

Q̂t
δ

Q̂t
δ∇̂ϕ

)∨
=

(
Q̂s

δ∇̂ϕ
)∨ = Ds

δϕ.

With u ∈ Ht,p,δ(Rn), one can take an approximating sequence {ϕ j } j∈N ⊂ C∞
c (Rn)

with ϕ j → u in Ht,p,δ(Rn) and infer from the continuity of the operator Ms
t that

Ds
δϕ j = Ms

t D
t
δϕ j → Ms

t D
t
δu in L p(Rn). This shows that u ∈ Hs,p,δ(Rn) with

Ds
δu = Ms

t D
t
δu ∈ L p(Rn). The bound (3.13) follows now from (3.14).

Finally, the statement for u ∈ Ht,p,δ
0 (Ω) follows by extending u to R

n by zero,
noting that then the nonlocal gradient of u is zero in Ωc. ��
Remark 6 a) We note that this approach does not extend to p = 1, since the Mihlin-

Hörmander theorem is not valid in this case. Moreover, this approach does not
apply to u ∈ Ht,p,δ(Ω) because it requires functions to be defined on all of R

n
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for the Fourier transform techniques. In fact, there is no obvious way of how to
extend functions in Ht,p,δ(Ω), as they can be ill-behaved in the strip Ωδ \ Ω .

b) An inequality of the type (3.13) does not hold for the fractional gradient, which
can be seen from the homogeneity property. Indeed, for u ∈ C∞

c (Rn) and 0 ≤
s < t ≤ 1, we may define for λ > 0 the function uλ := λn/p−t u(λ ·). Then, we
can calculate that for x ∈ R

n

Dtuλ(x) = λn/pDtu(λx) and Dsuλ(x) = λn/p−(t−s)Dsu(λx).

This gives ‖Dtuλ‖L p(Rn;Rn) = ‖Dtu‖L p(Rn;Rn), whereas ‖Dsuλ‖L p(Rn;Rn) =
λ−(t−s)‖Dsu‖L p(Rn;Rn). Letting λ → 0 shows that (3.13) cannot hold for the
fractional gradient.

As a consequence, we derive the following generalization of the convergence result
Lemma 7 to the nonlocal Sobolev setting.

Theorem 3 Let p ∈ (1,∞) and let {s j } j∈N ⊂ [0, 1] be a sequence converging to
s ∈ [0, 1] with s̄ := sup j∈N s j . Then, it holds for every u ∈ Hs̄,p,δ(Rn) that

D
s j
δ u → Ds

δu in L p(Rn; R
n) as j → ∞.

If Ω ⊂ R
n is open and bounded and u ∈ Hs̄,p,δ

0 (Ω), then

D
s j
δ u → Ds

δu in L p(Ω; R
n) as j → ∞.

Proof Take ε > 0 and ϕε ∈ C∞
c (Rn) such that ‖u−ϕε‖Hs̄,p,δ(Rn) ≤ ε, cf. Theorem 1.

Then, due to Corollary 1,

‖Dsj
δ (u − ϕε)‖L p(Rn;Rn) ≤ Cε for all j ∈ N and ‖Ds

δ (u − ϕε)‖L p(Rn;Rn) ≤ Cε.

If we choose j large enough so that ‖Ds
δϕε − D

sj
δ ϕε‖L p(Rn;Rn) ≤ ε, which is possible

by Lemma 7, we obtain

‖Ds
δu − D

sj
δ u‖L p(Rn;Rn) ≤ ‖Ds

δ(u − ϕε)‖L p(Rn;Rn) + ‖Ds
δϕε − D

sj
δ ϕε‖L p(Rn;Rn)

+ ‖Dsj
δ (u − ϕε)‖L p(Rn;Rn)

≤ (2C + 1)ε,

and letting ε → 0 yields the desired convergence. The case u ∈ Hs̄,p,δ
0 (Ω) follows

again via extension. ��
Remark 7 For the particular case of localization to the classical gradient, i.e., when
s j → 1 as j → ∞, the convergence D

sj
δ u → ∇u in L p(Ω; R

n) with u ∈ W 1,p(Ωδ)

holdswithout imposing complementary values. Indeed, byProposition 1 andLemma6,
we can bound ‖Ds

δu‖L p(Ω;Rn) ≤ C‖∇u‖L p(Ωδ;Rn) uniformly in s, and then, a similar
argument to that of the proof of Theorem 3 applies.
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As another consequence of (3.13), we establish a nonlocal Poincaré inequality with
a constant independent of the fractional order s. The proof builds on two pillars, namely
the estimate of Corollary 1, which says that it is enough to prove the inequality for
s = 0, and in order to achieve the latter, a version of the fundamental theorem of
calculus for the case s = 0 from Proposition 2.

Theorem 4 (Nonlocal Poincaré inequality with uniform constants in s) Let s ∈ [0, 1],
p ∈ (1,∞) and Ω ⊂ R

n be open and bounded. Then, there exists a constant C > 0
depending only on Ω , δ and p such that for all u ∈ Hs,p,δ

0 (Ω),

‖u‖L p(Ω) ≤ C‖Ds
δu‖L p(Ω;Rn). (3.15)

Proof Given Corollary 1, it suffices to prove (3.15) for s = 0. Moreover, we may
assume by density (cf. (2.9)) that u ∈ C∞

c (Ω−δ). Proposition 2 together with the fact
that supp(D0

δu) ⊂ Ω then implies

‖u‖L p(Ω) ≤ ‖RD0
δu‖L p(Rn) + |Ω|‖Wδ‖L∞(Rn;Rn)‖D0

δu‖L p(Ω;Rn)

≤ C‖D0
δu‖L p(Ω;Rn),

where the second inequality uses the L p-boundedness of the Riesz transform. ��

Finally, we present a compactness statement for sequences that are bounded in
nonlocal spaces of different order. Itwill be used later in the proof of theΓ -convergence
result in Section 6.

Lemma 9 (Weak compactness of sequences in varying order nonlocal spaces) Let
p ∈ (1,∞) andΩ ⊂ R

n be open and boundedwithΩ−δ a Lipschitz domain. Consider

any sequence {s j } j∈N ⊂ [0, 1] converging to s ∈ [0, 1] and u j ∈ H
sj ,p,δ
0 (Ω) for

j ∈ N with

sup
j∈N

‖Dsj
δ u j‖L p(Ω;Rn) < ∞.

Then, up to a non-relabeled subsequence, u j⇀u in L p(Ωδ) with u ∈ Hs,p,δ
0 (Ω) and

as j → ∞,

D
s j
δ u j⇀Ds

δu in L p(Ω; R
n) and D

s j
δ u j (x) → Ds

δu(x)

for a.e. x ∈ Ω \ Ω−δ . Additionally, if s > 0 then also u j → u in L p(Ωδ).

Proof In view of the Poincaré inequality of Theorem 4, we observe that

sup
j∈N

‖u j‖L p(Ω) ≤ C sup
j∈N

‖Dsj
δ u j‖L p(Ω;Rn) < ∞.
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Therefore, we can extract a subsequence of {u j } j∈N (non-relabeled) and find u ∈
L p(Ωδ) and V ∈ L p(Ω; R

n) such that

u j⇀u in L p(Ωδ) and D
sj
δ u j⇀V in L p(Ω; R

n)

as j → ∞. Note that u = 0 in Ωδ \ Ω−δ , since the same holds for the functions u j .

To show that u ∈ Hs,p,δ
0 (Ω) and V = Ds

δu, take ϕ ∈ C∞
c (Ω; R

n) and observe that

∫
Ω

V · ϕ dx = lim
j→∞

∫
Ω

D
sj
δ u j · ϕ dx

= − lim
j→∞

∫
Ωδ

u j div
s j
δ ϕ dx = −

∫
Ωδ

u divsδ ϕ dx,

where the last equality results from the weak convergence u j⇀u in L p(Ωδ) and the
uniform convergence div

s j
δ ϕ → divsδ ϕ by Lemma 7. Hence, u ∈ Hs,p,δ(Ω) with

Ds
δu = V , and Proposition 3 implies u ∈ Hs,p,δ

0 (Ω), since u = 0 a.e. in Ωδ \ Ω−δ

and Ω−δ is Lipschitz.
It remains to prove the pointwise convergence of the nonlocal gradients outside

of Ω−δ . To this end, we observe in view of Remark 1 that for any t ∈ [0, 1] and
v ∈ Ht,p,δ

0 (Ω),

Dt
δv(x) =

{
(dtδ ∗ v)(x) if t ∈ [0, 1),
0 if t = 1,

(3.16)

for a.e. x ∈ Ω \ Ω−δ; note that |∂Ω−δ| = 0, so that this set may be ignored. If s �= 1,
it holds for any ε > 0 that d

s j
δ → dsδ uniformly on Bε(0)c as j → ∞. Consequently,

lim
j→∞ D

sj
δ u j (x) = lim

j→∞

∫
Ω−δ

u j (y)d
s j
δ (x − y) dy

=
∫

Ω−δ

u(y)dsδ (x − y) dy = Ds
δu(x)

for a.e. x ∈ Ω \ Ω−δ . In the case s = 1, we have d
s j
δ → 0 uniformly on Bε(0)c as

j → ∞ due to the convergence cn,s j → 0. The same argument then yields the desired
pointwise convergence in light of (3.16).

Finally, if s > 0, onemay assumewithout loss of generality that s := inf j∈N s j > 0.

We can then exploit the continuous embeddings H
sj ,p,δ
0 (Ω) ↪→ H

s,p,δ
0 (Ω) for j ∈ N

with uniform constants, which follow in light of Corollary 1, to deduce that u j⇀u in

H
s,p,δ
0 (Ω). Then, u j → u in L p(Ωδ) by the compactness result in [6, Theorem 6.1

and 7.3]. ��
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4 Weak lower semicontinuity and existence theory

This section is devoted to characterizing the weak lower semicontinuity of integral
functionals depending on the nonlocal gradient, that is, functionals of the form

F(u) =
∫

Ω

f (x, u(x), Ds
δu(x)) dx for u ∈ Hs,p,δ

g (Ω; R
m), (4.1)

where s ∈ (0, 1), p ∈ (1,∞), Ω ⊂ R
n is open and bounded, g ∈ Hs,p,δ(Ω; R

m),
and f : Ω × R

m × R
m×n → R is a suitable integrand with p-growth. Using the

connection between the nonlocal gradient and the classical gradient from Theorem 2,
we can employ a translation procedure along the lines of [27] to conclude that the
weak lower semicontinuity of F is equivalent to the quasiconvexity of f in its third
argument. In fact, the quasiconvexity is only required in Ω−δ , which is due to the
strong convergence of the nonlocal gradient in Ωδ \ Ω−δ from Lemma 3.

Theorem 5 (Characterization of weak lower semicontinuity) Let s ∈ (0, 1), p ∈
(1,∞), Ω ⊂ R

n be open and bounded with |∂Ω−δ| = 0 and g ∈ Hs,p,δ(Ω; R
m).

Further, let f : Ω × R
m × R

m×n → R be a Carathéodory function satisfying

−C(1 + |z|p + |A|q) ≤ f (x, z, A) ≤ C(1 + |z|p + |A|p)

for a.e. x ∈ Ω and all (z, A) ∈ R
m × R

m×n with C > 0 and q ∈ [1, p).
Then, F from (4.1) is weakly lower semicontinuous on Hs,p,δ

g (Ω; R
m) if and only

if

f (x, z, ·) is quasiconvex for a.e. x ∈ Ω−δ and all z ∈ R
m, (4.2)

i.e., it holds for a.e. x ∈ Ω−δ and all z ∈ R
m with Y = (0, 1)n that

f (x, z, A) ≤
∫
Y
f (x, z, A + ∇ϕ(y)) dy

for all ϕ ∈ W 1,∞
0 (Y ; R

m) and A ∈ R
m×n.

Proof The proof follows the lines of [27, Theorem 4.1 and 4.5], we detail the differ-
ences for the reader’s convenience.

Step 1: Sufficiency. Assuming (4.2), let {u j } j∈N ⊂ Hs,p,δ
g (Ω; R

m) be a sequence

that converges weakly to u in Hs,p,δ
g (Ω; R

m). We divide the proof by splitting the
integral functional F and considering separately the integral contributions over Ω−δ

and Ω \ Ω−δ .

123



A variational theory for integral functionals involving...

Since u j → u in L p(Ωδ; R
m) by [6, Theorem 7.3] and Qs

δu j⇀Qs
δu in

W 1,p(Ω; R
m) by Theorem 2 (i), we conclude

∫
Ω−δ

f (x, u, Ds
δu) dx =

∫
Ω−δ

f (x, u,∇Qs
δu) dx

≤ lim inf
j→∞

∫
Ω−δ

f (x, u j ,∇Qs
δu j ) dx

= lim inf
j→∞

∫
Ω−δ

f (x, u j , D
s
δu j ) dx,

(4.3)

where the inequality is due to the quasiconvexity and p-growth of f , with the exact
argument of [27, Theorem 4.1] involving Young measures. Note that this requires the
negative part of the sequence { f (·, u j ,∇Qs

δu j )} j∈N to be equi-integrable, which is
guaranteed by the lower bound on f .

Secondly, for the integral on Ω \ Ω−δ , we invoke from Lemma 3 the convergence

Ds
δu j → Ds

δu ∈ L p(Ω \ O; R
m×n)

for any O � Ω−δ . Hence, a well-known strong lower semicontinuity result (e.g., [22,
Theorem 6.49]) yields

∫
Ω\O

f (x, u, Ds
δu) dx ≤ lim inf

j→∞

∫
Ω\O

f (x, u j , D
s
δu j ) dx .

Letting O ↓ Ω−δ implies, using once again the equi-integrability of the negative part
{ f (·, u j , Ds

δu j )} j∈N and the assumption |∂Ω−δ| = 0, that

∫
Ω\Ω−δ

f (x, u, Ds
δu) dx ≤ lim inf

j→∞

∫
Ω\Ω−δ

f (x, u j , D
s
δu j ) dx . (4.4)

The sufficiency now follows from adding (4.3) and (4.4).
Step 2: Necessity. Analogously to the proof of [27, Theorem 4.5], we may assume

without loss of generality that g = 0. In order to prove the stated quasiconvexity of
f , let us fix (x0, z0, A0) ∈ Ω−δ × R

m × R
m×n . Using Lemma 10, we may select a

ϕ0 ∈ C∞
c (Ω−δ; R

m) such that

ϕ0(x0) = z0 and Ds
δϕ0(x0) = A0. (4.5)

Consider any ϕ ∈ W 1,∞
0 (Y ; R

m) and assume that x0 + Y � Ω−δ; the latter can
be done without loss of generality in light of the scaling and translation invariances
related to the definition of quasiconvexity, see e.g., [17, Proposition 5.11]. If we fix
ρ ∈ (0, 1) and periodically extend ϕ to R

n , we can define the sequence {ϕρ
j } j∈N ⊂
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W 1,∞(Rn; R
m) by

ϕ
ρ
j (x) =

⎧⎨
⎩

ρ

j
ϕ
(
j
(x − x0)

ρ

)
for x ∈ Yρ := x0 + (0, ρ)n,

0 otherwise,
x ∈ R

n .

As this is a periodically oscillating sequence that converges to zero essentially uni-
formly, we find that ϕρ

j ⇀0 in W 1,p(Rn; R
m) as j → ∞.

Take a cut-off function χ ∈ C∞
c (Ω−δ; [0, 1]) with χ ≡ 1 on x0 + Y and define the

sequence {u j } j∈N ⊂ Hs,p,δ
0 (Ω; R

m) given by

u j := ϕ0 + χPs
δ ϕ

ρ
j ,

which converges weakly to ϕ0 in Hs,p,δ
0 (Ω; R

m) in light of the continuity of Ps
δ in

Theorem 2 (i i). In particular, we have u j → ϕ0 in L p(Ωδ; R
m) by [6, Theorem 7.3].

Moreover, it holds by the Leibniz rule in Lemma 2 and the fact that Ds
δPs

δ ϕ
ρ
j = ∇ϕ

ρ
j

that

Ds
δu j = Ds

δϕ0 + χ∇ϕ
ρ
j + Kχ (Ps

δ ϕ
ρ
j ).

Observe that Kχ (Ps
δ ϕ

ρ
j ) → 0 in L p(Ω; R

m×n) as j → ∞ due to the boundedness of

Kχ and that χ∇ϕ
ρ
j = ∇ϕ

ρ
j on Ω since ϕ

ρ
j is zero outside Yρ .

Finally, we exploit the weak lower semicontinuity ofF on Hs,p,δ
0 (Ω; R

m) to derive

∫
Ω

f (x, ϕ0, D
s
δϕ0) dx ≤ lim inf

j→∞

∫
Ω

f (x, u j , D
s
δu j ) dx

= lim inf
j→∞

∫
Yρ

f (x, u j , D
s
δϕ0 + ∇ϕ

ρ
j + Kχ (Ps

δ ϕ
ρ
j )) dx

+
∫

Ω\Yρ

f (x, u j , D
s
δϕ0 + Kχ (Ps

δ ϕ
ρ
j )) dx

≤ lim inf
j→∞

∫
Yρ

f (x, ϕ0, D
s
δϕ0 + ∇ϕ

ρ
j ) dx

+
∫

Ω\Yρ

f (x, ϕ0, D
s
δϕ0) dx,

where the last inequality uses [27, Lemma 4.10] to remove all the terms that converge
strongly to zero. In view of the p-growth of f , the integral over Ω \ Yρ is finite, so
that subtracting it from both sides gives

∫
Yρ

f (x, ϕ0, D
s
δϕ0) dx ≤ lim inf

j→∞

∫
Yρ

f (x, ϕ0, D
s
δϕ0 + ∇ϕ

ρ
j ) dx .

Because ϕ0 and Ds
δϕ0 are continuous and satisfy (4.5), the rest of the proof follows

by mimicking Steps 2-4 of [27, Theorem 4.5]. ��

123



A variational theory for integral functionals involving...

The following lemma was used in the previous proof and shows that one can con-
struct smooth functions with compact support whose nonlocal gradient has a desired
value at a point. The proof is omitted here, as it is nearly identical to [27, Lemma 4.3],
given that wδ is radial by (H1).

Lemma 10 Let s ∈ (0, 1) and let Ω ⊂ R
n be open and bounded. For any x0 ∈ Ω−δ ,

z ∈ R
m and A ∈ R

m×n, there exists a ϕ ∈ C∞
c (Ω−δ; R

m) such that ϕ(x0) = z and
Ds

δϕ(x0) = A.

With the perspective of Section 2.5, there is an alternative approach to proving
Theorem 5 that passes through the characterization of weak lower semicontinuity of
functionals depending on Riesz fractional gradients from [27]. For simplicity, we take
g = 0 and drop the dependence on x and z in f .

Proof (Alternative proof of Theorem 5) Step 1: Sufficiency. Let {u j } j∈N ⊂
Hs,p,δ
0 (Ω; R

m) converge weakly in Hs,p,δ
0 (Ω; R

m) to the limit function u ∈
Hs,p,δ
0 (Ω; R

m). As a quasiconvex function, f : R
m×n → R is also rank-one convex

and hence, locally Lipschitz continuous in the sense that

| f (A) − f (B)| ≤ C(1 + |A|p−1 + |B|p−1)|A − B| for all A, B ∈ R
m×n

with a constant C > 0, cf. e.g., [17, Proposition 2.32].
Consider the auxiliary function

hu(x, A) = 1Ω(x) f
(
A + (∇Rs

δ ∗ u)(x)
)

for x ∈ R
n and A ∈ R

m×n,

which is Carathéodory, quasiconvex in the second variable, and satisfies the growth
bound

|hu(x, A)| ≤ C
(
1 + |A|p + |(∇Rs

δ ∗ u)(x)|p) ≤ C
(
1 + |A|p + ‖u‖p

L p(Ωδ;Rm )

)
,

with the last step using the boundedness of ∇Rs
δ . By the local Lipschitz continuity of

f , we also find

∣∣∣
∫

Ω

f (Ds
δu j ) dx −

∫
Rn

hu(x, D
su j ) dx

∣∣∣
≤ C

(
1 + ‖Ds

δu j‖L p(Ω;Rm×n)

+ ‖u j‖L p(Ωδ;Rm ) + ‖u‖L p(Ωδ;Rm )

)‖u j − u‖L p(Ωδ;Rm ) → 0

as j → ∞. Since u j⇀u in Hs,p
0 (Ω−δ; R

m) by Lemma 5 and hu fulfills the require-
ments of [27, Theorem 4.1], the desired lower semicontinuity results from

lim inf
j→∞ F(u j ) = lim inf

j→∞

∫
Ω

f (Ds
δu j ) dx = lim inf

j→∞

∫
Rn

hu(x, D
su j ) dx

≥
∫
Rn

hu(x, D
su) dx =

∫
Ω

f (Ds
δu) dx = F(u).
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Step 2: Necessity. Suppose F is weakly lower semicontinuous on Hs,p,δ
0 (Ω; R

m).
Fix (x0, A0) ∈ Ω−δ ×R

m×n and using Lemma 10, let ϕ ∈ C∞
c (Ω−δ; R

m) be such that
Ds

δϕ(x0) = A0. A similar reasoning as in Step 1 shows for any sequence {u j } j∈N ⊂
Hs,p
0 (Ω−δ; R

m) converging weakly in Hs,p
0 (Ω−δ; R

m) to ϕ and with {Dsu j } j∈N p-
equi-integrable that

lim inf
j→∞

∫
Rn

hϕ(x, Dsu j ) dx ≥ lim inf
j→∞

∫
Ω

f (Ds
δu j ) dx ≥

∫
Rn

hϕ(x, Dsϕ) dx,

where the first inequality uses the p-equi-integrability of {Dsu j } j∈N and the strong
convergence ∇Rs

δ ∗ u j → ∇Rs
δ ∗ ϕ in L p(Ω; R

m×n) to apply a well-known freezing
lemma (see e.g., [27, Lemma 4.10]). The proof of [27, Theorem 4.5] then yields for
all v ∈ W 1,∞

0 (Y ; R
m),

hϕ(x0, A0) ≤
∫
Y
hϕ(x0, A0 + ∇v) dy.

If we further suppose that supp(ϕ) ⊂ B(x0, b0δ), which is possible by Lemma 10, then
(∇Rs

δ ∗ ϕ)(x0) = 0 since ∇Rs
δ = 0 in B(0, b0δ), see (8.1). Therefore, the inequality

turns into

f (A0) ≤
∫
Y
f (A0 + ∇v) dy,

as desired. ��

Let us briefly comment on the role of quasiconvexity in Theorem 5, especially in
relation with a new generalized convexity notion that can be considered natural in our
nonlocal setting. For simplicity, we assume that f is constant in the x- and z-variables.

Remark 8 (Ds
δ -quasiconvexity) Let f : R

m×n → R be a measurable function. We call
f Ds

δ -quasiconvex if for every A ∈ R
m×n ,

f (A) ≤
∫
Y
f
(
A + Ds

δψ(y)
)
dy for all ψ ∈ Hs,∞,δ

# (Y ; R
m), (4.6)

whenever the integral on the left-hand side exists.
Under consideration of Remark 4c) and by using the characterization of quasi-

convexity with periodic test functions (see e.g., [17, Proposition 5.13]), it follows
immediately that Ds

δ -quasiconvexity is equivalent to the usual quasiconvexity. An
analogous result for fractional instead of nonlocal gradients was established in [27],
by showing equivalence of quasiconvexity with α-quasiconvexity, where α = s.

In fact, opposed to the fractional case, one can show here that for continuous
f : R

m×n → R, the periodic test functions in (4.6) can equivalently be replaced by
test functions in the complementary-value space Hs,∞,δ

0 (Ω; R
m) for any open and
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bounded Ω ⊂ R
n . The resulting generalized convexity notion defined by

f (A) ≤ 1

|Ω|
∫

Ω

f
(
A + Ds

δψ(y)
)
dy for all ψ ∈ Hs,∞,δ

0 (Ω; R
m) and A ∈ R

m×n

(4.7)

is indeed equivalent to quasiconvexity as well. To see this, we observe first that qua-
siconvexity implies (4.7) since it holds for any ψ ∈ Hs,∞,δ

0 (Ω; R
m) that

ϕ := Qs
δψ ∈ W 1,∞

0 (Ω; R
m) with ∇ϕ = Ds

δψ,

cf. Remark 4. Conversely, for any given ϕ ∈ W 1,∞
0 (Y ; R

m), one can consider the
sequence {ψ j } j∈N given by

ψ j := χPs
δ ϕ

ρ
j ∈ Hs,∞,δ

0 (Ω; R
m),

where ρ ∈ (0, 1) is fixed and ϕ
ρ
j and the cut-off function χ are as in Step 2 of the

proof of Theorem 5. Then, with similar arguments and the compact embedding of
Hs,p,δ
0 (Ω; R

m) into L∞(Ωδ; R
m) for p > n/s, see [6, Theorem 7.3], we obtain

Ds
δψ j − ∇ϕ

ρ
j → 0 in L∞(Ω; R

m×n) as j → ∞. Using the continuity of f and (4.7)
then implies

f (A) ≤ lim
j→∞

1

|Ω|
∫

Ω

f
(
A + Ds

δψ j (y)
)
dy = lim

j→∞
1

|Ω|
∫

Ω

f
(
A + ∇ϕ

ρ
j (y)

)
dy

= |Yρ |
|Ω|

∫
Y
f
(
A + ∇ϕ(y)

)
dy + |Ω| − |Yρ |

|Ω| f (A),

which shows the quasiconvexity of f .

With the previous findings at hand, the following existence result is now a simple
consequence of the direct method.

Corollary 2 Let s ∈ (0, 1), p ∈ (1,∞),Ω ⊂ R
n be open and bounded with |∂Ω−δ| =

0 and g ∈ Hs,p,δ(Ω). Suppose that f : Ω × R
m × R

m×n → R is a Carathéodory
function satisfying

c|A|p − C ≤ f (x, z, A) ≤ C(1 + |z|p + |A|p)

for a.e. x ∈ Ω and all (z, A) ∈ R
m × R

m×n with constants c,C > 0. If A �→
f (x, z, A) is quasiconvex for a.e. x ∈ Ω−δ and all z ∈ R

m, then F as in (4.1) admits
a minimizer in Hs,p,δ

g (Ω; R
m).

Proof If {u j } j∈N ⊂ Hs,p,δ
g (Ω; R

m) is a minimizing sequence for F , we find by the
coercivity bound on f that {Ds

δu j } j∈N is a bounded sequence in L p(Ω; R
m×n). By the

nonlocal Poincaré inequality in [6, Theorem 6.2], it follows that {u j } j∈N is a bounded
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sequence in Hs,p,δ
g (Ω; R

m), so that, up to a non-relabeled subsequence, u j⇀u in

Hs,p,δ
g (Ω; R

m) for some u ∈ Hs,p,δ
g (Ω; R

m). Together with Theorem 5, this shows

that u is a minimizer of F over Hs,p,δ
g (Ω; R

m). ��

5 Homogenization and relaxation

In the next step, we aim to prove new relaxation and homogenization results for our
nonlocal functionals. Both will follow as corollaries of a more general, abstract state-
ment about the Γ -convergence of integral functionals with dependence on nonlocal
gradients, which is of independent interest. Our approach relies on the connection
between the nonlocal and classical gradient, as established in Section 2.4, in order to
reduce the problem to a standard setting.

Throughout the section, let s ∈ (0, 1), p ∈ (1,∞) and Ω ⊂ R
n be an open and

bounded set with |∂Ω−δ| = 0, and g ∈ Hs,p,δ(Ω; R
m). Further, we assume that

the readers are familiar with the basics of Γ -convergence, and refer to [13, 18] for a
comprehensive introduction.

Let us start with some necessary notations in preparation for the announced abstract
Γ -convergence result. For any Carathéodory integrand f : Ω × R

m×n → R with
standard p-growth and p-coercivity, i.e., there are constants C, c > 0 such that

c|A|p − C ≤ f (x, A) ≤ C(|A|p + 1) (5.1)

for a.e. x ∈ Ω and all A ∈ R
m×n , we define the three integral functionals I f :

L p(Ω−δ; R
m) → R∞, J f : L p(Ω \ Ω−δ; R

m×n) → R and F f : L p(Ωδ; R
m) →

R∞ as

I f (v) =
⎧⎨
⎩

∫
Ω−δ

f (x,∇v) dx for v ∈ W 1,p(Ω−δ; R
m),

∞ otherwise,

J f (V ) =
∫

Ω\Ω−δ

f (x, V ) dx,

and

F f (u) =
⎧⎨
⎩

∫
Ω

f (x, Ds
δu) dx for u ∈ Hs,p,δ

g (Ω; R
m),

∞ otherwise,

respectively.

Theorem 6 (General Γ -convergence result) Suppose f j , f∞ : Ω × R
m×n → R for

j ∈ N are Carathéodory integrands satisfying (5.1) uniformly in j and

| f j (x, A) − f j (x, B)| ≤ M(1 + |A|p−1 + |B|p−1)|A − B| (5.2)
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for a.e. x ∈ Ω , all A, B ∈ R
m×n and all j ∈ N with a constant M > 0. If the

sequence {I f j } j∈N converges to I f∞ in the sense of Γ -convergence regarding the
strong topology in L p(Ω−δ; R

m) as j → ∞, in short,

Γ (L p)- lim
j→∞ I f j = I f∞ (5.3)

and

J f j → J f∞ pointwise, (5.4)

then

Γ (L p)- lim
j→∞F f j = F f∞, (5.5)

that is, {F f j } j∈N Γ -converges with respect to the strong topology in L p(Ωδ; R
m) to

F f∞ as j → ∞.
Moreover, every sequence {u j } j∈N ⊂ L p(Ωδ; R

m)with uniformly bounded energy
sup j F f j (u j ) < ∞ has a converging subsequence in L p(Ωδ; R

m).

Proof By adding a constant, we may assume without loss of generality that f j for
j ∈ N and f∞ are non-negative. Further, we observe upfront that due to (5.2), the
functionalsJ f j for j ∈ N are locally Lipschitz on L p(Ω \Ω−δ; R

m×n)with a uniform
Lipschitz constant. The pointwise convergence J f j → J f∞ in (5.4) is therefore
equivalent to locally uniform convergence; in particular, it holds for any sequence
Vj → V in L p(Ω \ Ω−δ; R

m×n) that

lim
j→∞J f j (Vj ) = J f∞(V ). (5.6)

The rest of the proof is split into the usual steps, proving first compactness to obtain
the add-on and then, the liminf-inequality and a complementary upper bound via the
existence of recovery sequences, which in combination yields (5.5).

Step 1: Compactness. In view of the lower bound in (5.1), this is an immediate
consequence of the Poincaré inequality and compactness result in Hs,p,δ

g (Ω; R
m) (cf.

[6, Theorem 6.1 and 7.3]).
Step 2: Liminf-inequality. Let {u j } j∈N ⊂ L p(Ωδ; R

m) be a convergent sequence
for j → ∞ with limit u ∈ L p(Ωδ; R

m). Suppose without loss of generality that
lim inf j→∞ F f j (u j ) = lim j→∞ F f j (u j ) < ∞. It follows then from the coercivity

bound in (5.1) that {u j } j∈N ⊂ Hs,p,δ
g (Ω; R

m) is bounded and thus,

u j⇀u in Hs,p,δ
g (Ω; R

m).

By Theorem 2 (i), it holds thatQs
δu j⇀Qs

δu inW 1,p(Ω; R
m) with ∇Qs

δu = Ds
δu and

∇Qs
δu j = Ds

δu j for j ∈ N . Hence, the liminf-inequality from the Γ -convergence of
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{I f j } j∈N in (5.3) yields

∫
Ω−δ

f∞(x, Ds
δu) dx = I f∞(Qs

δu) ≤ lim inf
j→∞ I f j (Qs

δu j )

= lim inf
j→∞

∫
Ω−δ

f j (x, D
s
δu j ) dx .

(5.7)

Additionally, for any O � R
n open with Ω−δ � O , it holds according to Lemma 3

that 1Ω\ODs
δu j → 1Ω\ODs

δu in L p(Ω \ Ω−δ; R
m×n). We then find in view of (5.6)

and the non-negativity of the functions f j that

J f ∞(1Ω\ODs
δu) = lim

j→∞J f j (1Ω\ODs
δu j )

≤ lim inf
j→∞ J f j (D

s
δu j ) +

∫
O\Ω−δ

f j (x, 0) dx .

Due to 0 ≤ f j (·, 0) ≤ C for all j ∈ N and |∂Ω−δ| = 0, one may let O tend to Ω−δ

to conclude

∫
Ω\Ω−δ

f∞(x, Ds
δu) dx = J f∞(Ds

δu) ≤ lim inf
j→∞ J f j (D

s
δu j )

= lim inf
j→∞

∫
Ω\Ω−δ

f j (x, D
s
δu j ) dx .

Finally, combining this with (5.7) yields the desired liminf-inequality

lim inf
j→∞ F f j (u j ) ≥ F f∞(u).

Step 3: Limsup-inequality. Take u ∈ Hs,p,δ
g (Ω; R

m) withF f∞(u) < ∞ and define
v = Qs

δu ∈ W 1,p(Ω; R
m), which satisfies ∇v = Ds

δu on Ω by Theorem 2 (i). We

need to construct a recovery sequence (u j ) j ⊂ Hs,p,δ
g (Ω; R

m) that converges to u
weakly in L p(Ω; R

m) and satisfies

lim sup
j→∞

F f j (u j ) ≤ F f∞(u). (5.8)

To this end, let ε > 0befixed.Theupper bound from theΓ -convergenceof {I f j } j∈N
to I f∞ in combination with an argument to enforce boundary conditions as in [18,
Proof of Theorem 21.1] allows us to find a sequence {v j } j∈N ⊂ W 1,p(Ω−δ; R

m)with
the properties that v j = v in Ω−δ \ Uε for all j ∈ N with some open Uε � Ω−δ ,
v j → v in L p(Ω−δ; R

m), and

lim sup
j→∞

∫
Ω−δ

f j (x,∇v j ) dx ≤
∫

Ω−δ

f∞(x,∇v) dx + ε < ∞. (5.9)
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As a consequence of (5.9) together with the coercivity bound in (5.1) and Poincaré’s
inequality, the sequence {v j } j∈N converges not only in L p, but also weakly in W 1,p,
that is,

v j − v⇀0 in W 1,p(Ω−δ; R
m). (5.10)

After extending {v j − v} j∈N by zero to a sequence in W 1,p(Rn; R
m), we conclude

from Theorem 2 (i i) that

ũ j := Ps
δ (v j − v) ∈ Hs,p,δ(Ω; R

m)

satisfies Ds
δ ũ j = ∇(v j −v) onΩ . Hence, under consideration of (5.10) and Lemma 4,

ũ j → 0 in L p(Ω; R
m) and ũ j⇀0 in Hs,p,δ(Ω; R

m) (5.11)

as j → ∞. Considering a cut-off function χ ∈ C∞
c (Ω−δ) with χ ≡ 1 on Uε , we

define

u j := u + χ ũ j ∈ Hs,p,δ
g (Ω; R

m) for j ∈ N.

Then, by the Leibniz rule in Lemma 2,

Ds
δu j = Ds

δu + χDs
δ ũ j + Kχ (ũ j ) = ∇v + χ∇(v j − v) + Kχ (ũ j )

for every j ∈ N; note that, in particular, Ds
δu j = ∇v j + Kχ (ũ j ) on Uε , while

Ds
δu j = Ds

δu + Kχ (ũ j ) on Ω \ Uε since ∇(v j − v) is zero there. As j → ∞, we
have in view of (5.11) that

u j → u in L p(Ω; R
m) and Kχ (ũ j ) → 0 in L p(Ω; R

m×n). (5.12)

To show (5.8), we split up the functionalsF f j into three integrals overUε ,Ω \Ω−δ ,
and Ω−δ \Uε , and study their asymptotic behavior for j → ∞ separately. First, since
the local Lipschitz condition (5.2) in combination with Hölder’s inequality, (5.10),
and the second convergence in (5.12) shows

lim
j→∞

∫
Uε

| f j (x,∇v j + Kχ (ũ j )) − f j (x,∇v j )| dx = 0,
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we can use (5.9) to infer

lim sup
j→0

∫
Uε

f j (x, D
s
δu j ) dx = lim sup

j→∞

∫
Uε

f j (x,∇v j + Kχ (ũ j )) dx

= lim sup
j→∞

∫
Uε

f j (x,∇v j ) dx

≤
∫

Ω−δ

f∞(x,∇v) dx + ε

=
∫

Ω−δ

f∞(x, Ds
δu) dx + ε.

(5.13)

Second, Ds
δu j = Ds

δu + Kχ (ũ j ) → Ds
δu in L p(Ω \ Ω−δ; R

m×n) along with (5.6)
implies

lim
j→∞

∫
Ω\Ω−δ

f j (x, D
s
δu j ) dx = lim

j→∞J f j (D
s
δu j )

= J f ∞(Ds
δu) =

∫
Ω\Ω−δ

f∞(x, Ds
δu) dx .

(5.14)

For the third integral expression, we find with the upper bound in (5.1) that

lim sup
j→∞

∫
Ω−δ\Uε

f j (x, D
s
δu j ) dx

≤ lim sup
j→∞

C
(‖Ds

δu + Kχ (ũ j )‖L p(Ω−δ\Uε ) + |Ω−δ \Uε |
)

= C
(‖Ds

δu‖L p(Ω−δ\Uε ) + |Ω−δ \Uε |
)
.

(5.15)

Summing (5.13), (5.14) and (5.15) finally gives

lim sup
j→∞

F f j (u j ) ≤ F f∞(u) + C
(‖Ds

δu‖L p(Ω−δ\Uε ) + |Ω−δ \Uε |
) + ε.

Letting Uε ↑ Ω−δ and ε ↓ 0 finishes the proof of (5.8) after choosing an appropriate
diagonal sequence. ��

As indicated before, the above theorem enables us to carry over well-known results
on variational convergence for standard integral-functionals to our nonlocal setting.
One example we wish to highlight here lies within the variational theory of homoge-
nization. Given the classical findings in [11, 34], we can derive the Γ -limit of nonlocal
functionals with periodic oscillations in the space variable as an immediate conse-
quence of Theorem 6. It turns out that the homogenized integrand complies with the
same (multi-)cell formula as in the classical case when integrating over Ω , while in
the strip where complementary-values are prescribed, an averaging of the integrand
in the fast variable occurs.
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Corollary 3 (Homogenization) Let Y = (0, 1)n and let f : R
n × R

m×n → R be
a Carathéodory integrand that is Y -periodic in its first argument and satisfies for
a.e. y ∈ R

n and all A, B ∈ R
m×n that

c|A|p − C ≤ f (y, A) ≤ C(|A|p + 1)

and

| f (y, A) − f (y, B)| ≤ M(1 + |A|p−1 + |B|p−1)|A − B| (5.16)

with constants c,C, M > 0. Further, let the functionals Fε,Fhom : L p(Ωδ; R
m) →

R∞ with ε > 0 be defined as

Fε(u) =
⎧⎨
⎩

∫
Ω

f
( x

ε
, Ds

δu
)
dx for u ∈ Hs,p,δ

g (Ω; R
m),

∞ otherwise,

and

Fhom(u) =
⎧⎨
⎩

∫
Ω−δ

fhom(Ds
δu) dx +

∫
Ω\Ω−δ

f̄ (Ds
δu) dx for u ∈ Hs,p,δ

g (Ω; R
m),

∞ otherwise,

where f̄ := ∫
Y f (y, · ) dy and fhom is the classical homogenized integrand given for

A ∈ R
m×n by

fhom(A) = lim
k→∞

1

kn
inf

{∫
kY

f (y, A + ∇v(y)) dy : v ∈ W 1,∞
# (kY ; R

m)

}
.

(5.17)

Then, the convergence

Γ (L p)- lim
ε→0

Fε = Fhom

holds, along with the corresponding compactness in L p(Ωδ; R
m).

Proof Let {ε j } j∈N be a sequence with ε j → 0 as j → ∞ and set

f j (x, A) := f
( x

ε j
, A

)
for j ∈ N

and f∞(x, A) = 1Ω−δ (x) fhom(A) + 1Ω\Ω−δ (x) f̄ (A),

for x ∈ Ω and A ∈ R
m×n . To conclude the statement from Theorem 6, it suffices

to verify the two convergence conditions (5.3) and (5.4) for these specific choices of
f j and f∞. Indeed, (5.3) follows from a classical homogenization result, see e.g.,
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[14, Theorem 2.1]. For (5.4), we note that since J f j is locally Lipschitz on L p(Ω \
Ω−δ; R

m×n)with a constant uniform in j by (5.16), it is enough to prove the pointwise
convergence on a dense set, for example on C(Ω; R

m×n). For V ∈ C(Ω; R
m×n), the

convergence

lim
j→∞J f j (V ) = lim

j→∞

∫
Ω\Ω−δ

f
( x

ε j
, V

)
dx =

∫
Ω\Ω−δ

f̄ (V ) dx = J f∞(V )

follows from the fact that (y, x) �→ f (y, V (x)) is an admissible two-scale integrand
(cf. [3, Corollary 5.4]). ��

As a special case of the homogenization result when the integrand does not depend
on y, we derive a relaxation result for functionals F : L p(Ωδ; R

m) → R∞ of the
form

F(u) =
⎧⎨
⎩

∫
Ω

f (Ds
δu) dx if u ∈ Hs,p,δ

g (Ω; R
m),

∞ otherwise.
(5.18)

Recall that the relaxation of F with respect to L p-convergence is given by

F rel(u) = inf

{
lim inf
j→∞ F(u j ) : u j → u in L p(Ωδ; R

m)

}
,

which corresponds to the Γ -limit of the sequence constantly equal to F (cf. [18,
Remark4.5]).Besides, it is easy to verify in this case that themulti-cell homogenization
formula in (5.17) reduces to the quasiconvex envelope

f qc(A) = inf
{∫

Y
f (A + ∇v(y)) dy : v ∈ W 1,∞

# (Y ; R
m)

}
, A ∈ R

m×n .

The following statement is now an immediate consequence of Corollary 3.

Corollary 4 (Relaxation) Let f : R
m×n → R be continuous and satisfy for all A, B ∈

R
m×n

c|A|p − C ≤ f (A) ≤ C(|A|p + 1)

and

| f (A) − f (B)| ≤ M(1 + |A|p−1 + |B|p−1)|A − B|

with constants c,C, M > 0. Then, the relaxation of F in (5.18) is given by

F rel(u) =
⎧⎨
⎩

∫
Ω−δ

f qc(Ds
δu) dx +

∫
Ω\Ω−δ

f (Ds
δu) dx if u ∈ Hs,p,δ

g (Ω; R
m),

∞ otherwise.
(5.19)
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Remark 9 Note that the three Γ -convergence statements in this section can be
rephrased equivalently for functionals defined on Hs,p,δ

g (Ω; R
m), if the latter is

endowed with the weak topology (cf. e.g., [18, Proposition 8.16]).

6 �-convergence for varying fractional parameter

Finally, we study the asymptotic behavior of the nonlocal integral functionals in (6.1)
as the fractional parameter s varies. Of particular interest is the critical regime s → 1,
which leads to localization, meaning a local limit functional, as we prove below.

The set-up in this section is similar to the previous one. Let s ∈ [0, 1], p ∈ (1,∞)

and let Ω ⊂ R
n be open and bounded such that Ω−δ is a Lipschitz domain. Further,

let f : Ω × R
m×n → R be a Carathéodory function with (uniform) p-growth and

p-coercivity in the second variable, i.e., there are constants c,C > 0 such that

c|A|p − C ≤ f (x, A) ≤ C(1 + |A|p) for a.e. x ∈ Ω and all A ∈ R
m×n .

We define the functionals Fs : L p(Ωδ; R
m) → R∞ as

Fs(u) =
⎧⎨
⎩

∫
Ω

f (x, Ds
δu) dx for u ∈ Hs,p,δ

0 (Ω; R
m),

∞ otherwise.
(6.1)

Recalling that D1
δ is defined to coincide with the classical weak gradient, i.e., D1

δu =
∇u, and the identification of H1,p,δ

0 (Ω; R
m) in (2.10), we have for s = 1 the local

integral functional,

F1(u) =
∫

Ω

f (x,∇u) dx for u ∈ W 1,p
0 (Ωδ; R

m) with u = 0 a.e. in Ωδ \ Ω−δ,

and F1 = ∞ otherwise in L p(Ωδ; R
m).

The next theorem establishes the variational convergence of the functionals {Fs}s .
The proof combines the preparations and tools from the earlier sections, such as the
compactness result in Lemma 9 and the translation mechanism between nonlocal and
local gradients of Theorem 2.

Theorem 7 (Γ -limits for s → s′ ∈ [0, 1]) Let Fs for s ∈ [0, 1] be as in (6.1) with
the additional property that f (x, ·) is quasiconvex for a.e. x ∈ Ω−δ . Then, the family
{Fs}s converges for s → s′ to Fs′ in the sense of Γ -convergence, both regarding the
weak and strong topology in L p(Ωδ; R

m), that is,

Γ (L p)- lim
s→s′

Fs = Fs′ = Γ (w-L p)- lim
s→s′

Fs . (6.2)

Sequential compactness of sequences with uniformly bounded energy holds with
respect to the strong topology in L p(Ωδ; R

m) if s′ ∈ (0, 1] and the weak topology in
L p(Ω; R

m) if s′ = 0.
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Proof Let {s j } j∈N ⊂ [0, 1] be a sequence converging to s′ ∈ [0, 1] as j → ∞.
Step 1: Compactness. Let {u j } j∈N ⊂ L p(Ωδ; R

m) with sup j∈N Fs j (u j ) < ∞.

This implies u j ∈ H
sj ,p,δ
0 (Ω; R

m) for all j ∈ N and by the coercivity bound on f ,
also

sup
j∈N

‖Dsj
δ u j‖L p(Ω;Rm×n) < ∞.

We can therefore use Lemma 9 to deduce the strong and weak sequential compactness
of the sequence {u j } j in L p(Ωδ; R

m) when s′ ∈ (0, 1] and s′ = 0, respectively.
Step 2: Liminf-inequality for weakly converging sequences. Let u ∈ L p(Ωδ; R

m)

and {u j } j∈N ⊂ L p(Ωδ; R
m) with u j⇀u in L p(Ωδ; R

m). Assuming without loss of
generality that

lim inf
j→∞ Fs j (u j ) = lim

j→∞Fs j (u j ) < ∞

yields u j ∈ H
sj ,p,δ
0 (Ω; R

m) for j ∈ N and by the coercivity bound on f , also

sup
j∈N

‖Dsj
δ u j‖L p(Ω;Rm×n) < ∞.

Hence, Lemma 9 applies, which shows that u ∈ Hs′,p,δ
0 (Ω; R

m) and as j → ∞

D
sj
δ u j⇀Ds′

δ u in L p(Ω; R
n) and D

sj
δ u j → Ds′

δ u a.e. in Ω \ Ω−δ. (6.3)

Defining

v j =
{
Q

sj
δ ∗ u j if s j �= 1,

u j if s j = 1
for j ∈ N and v =

{
Qs′

δ ∗ u if s′ �= 1,

u if s′ = 1,

weconclude fromTheorem2 (i) that {v j } j∈N ⊂ W 1,p(Ω; R
m) and v ∈ W 1,p(Ω; R

m)

with

∇v j = D
sj
δ u j on Ω for j ∈ N and ∇v = Ds′

δ u on Ω. (6.4)

Moreover, as supt∈[0,1)‖Qt
δ‖L1(Rn) < ∞ by Lemma 6, the sequence {v j } j∈N is

bounded in W 1,p(Ω; R
m). In account of (6.3) and (6.4), one can find a non-relabeled

subsequence with v j⇀v in W 1,p(Ω; R
m), after a suitable choice of translations. The

quasiconvexity (in Ω−δ) and p-growth of f then allow us to invoke a well-known
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weak lower semicontinuity result (cf. e.g., [17, Theorem 8.11]) to infer

∫
Ω−δ

f (x, Ds′
δ u) dx =

∫
Ω−δ

f (x,∇v) dx

≤ lim inf
j→∞

∫
Ω−δ

f (x,∇v j ) dx

= lim inf
j→∞

∫
Ω−δ

f (x, D
sj
δ u j ) dx .

(6.5)

On the other hand, in view of the pointwise convergence from (6.3) and the fact
that f is Carathéodory and bounded from below by a constant, we may use Fatou’s
lemma to deduce

lim inf
j→∞

∫
Ω\Ω−δ

f (x, D
sj
δ u j ) dx ≥

∫
Ω\Ω−δ

f (x, Ds′
δ u) dx . (6.6)

Summing (6.5) and (6.6) shows

lim inf
j→∞ Fs j (u j ) ≥ Fs′(u),

as desired.
Step 3: Strongly converging recovery sequences. Our construction relies on the

uniform convergence of the nonlocal gradients in Lemma 7. The rest follows then via
a standard density and diagonalization argument.

To be precise, let us consider u ∈ Hs′,p,δ
0 (Ω; R

m), otherwise the limsup-inequality

is immediate due to Fs′(u) = ∞. By the definition of Hs′,p,δ
0 (Ω; R

m), there is a
sequence {uk}k∈N ⊂ C∞

c (Ω−δ; R
m) with

uk → u in Hs′,p,δ(Ω; R
m) as k → ∞.

For each k ∈ N, Lemma 7 shows D
sj
δ uk → Ds′

δ uk in L p(Ω; R
m×n) as j → ∞,

and we conclude from Lebesgue’s dominated convergence theorem combined with
the growth bound on f that

lim
j→∞Fs j (uk) = lim

j→∞

∫
Ω

f (x, D
sj
δ uk) dx =

∫
Ω

f (x, Ds′
δ uk) dx = Fs′(uk).

Since Ds′
δ uk → Ds′

δ u in L p(Ω; R
m×n) as k → ∞, an analogous reasoning gives

limk→∞ Fs′(uk) = Fs′(u). Altogether, we have that uk → u in L p(Ωδ; R
m) and

lim
k→∞ lim

j→∞Fs j (uk) = Fs′(u).

Extracting a suitable diagonal sequence {uk j } j∈N via Attouch’s lemma finishes the
proof. ��
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Remark 10 a) We remark that the two Γ -convergence statements in (6.2) are equiv-
alent to the L p-Mosco-convergence of the family {Fs}s to Fs′ .

b) Note that one cannot expect strong L p-compactness for {Fs}s as s → 0, consid-
ering that H0,p,δ(Ω; R

m) = L p(Ωδ; R
m) with equivalent norms (cf. Remark 3).

c) Throughout this paper, we work with the sequential definition of Γ -limits, which
may differ in general from the topological definition for non-metric spaces.
However, the equi-coerciveness of the family {Fs}s in L p(Ωδ; R

m) (in fact,
Fs(u) ≥ c′‖u‖L p(Ωδ;Rm ) − C for all u ∈ L p(Ωδ; R

m) due to Theorem 4) and
the metrizability of the weak L p-topology on norm bounded sets guarantee that
the sequential Γ (w-L p)-limit coincides with the topological one, see e.g., [18,
Proposition 8.10].

d) It is not hard to see that an analogous statement to Theorem 7 holds also for more
general complementary values other than zero, e.g., for g ∈ H1,p,δ(Ω; R

m).
e) Under the additional assumptions required in the relaxation result of Corollary 4,

we can prove Γ -convergence for {Fs}s as s → s′ ∈ (0, 1] also in the case when
f is a homogeneous integrand that is not necessarily quasiconvex. Indeed, by first
relaxing the functionals (cf. [18, Proposition 6.11]), we find

Γ (L p)- lim
s→s′

Fs = Γ (L p)- lim
s→s′

F rel
s = F rel

s′ ;

here, F rel
s is given by the relaxation formula (5.19) for s ∈ (0, 1), which extends

also to the case s = 1 because of classical relaxation theory.

7 Conclusion

One of the key ingredients in the direct method of calculus of variations for proving
the existence of minimizers is weak lower semicontinuity. This paper shows that
quasiconvexity, the classical convexity notion in vectorial variational calculus, also
characterizes weak lower semicontinuity of integral functionals depending on finite-
horizon fractional gradients Ds

δ (Theorem 5). As a consequence, we could establish
an existence theory for this general class of nonlinear and nonlocal energy functionals
(Corollary 2).

The technical foundation for our new findings lies in suitable translation operators
that allow switching between nonlocal and classical gradients, as well as fractional
ones, as stated in Theorem 2. This result has interest on its own and can be useful
in various problems involving nonlocal gradients. However, this does not imply that
the nonlocal framework automatically inherits every result from the local case; in
particular, this translation technique does not preserve boundary conditions.

As an application, we derive a general statement about variational convergence,
which allows us to carry over established Γ -convergence results from the local to
the nonlocal setting. We illustrate the flexibility of this method with the example of
homogenization and relaxation (Corollaries 3 and 4). In both cases, the integrand of
the limit functional shows the same form in the classical case, i.e., a multi-cell formula
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for the homogenized integrand and a quasiconvex envelope for the relaxed one, except
for the collar region.

Finally, we considered the asymptotics for varying fractional order, proving the
continuity of the energy functionalwith respect to s, Theorem7.Besides the translation
mechanism, the crucial ingredient for the proof is the Poincaré inequality independent
of s (Theorem 4), which is proven using Fourier methods. As a particular case, we
obtained a localization result when s goes to 1, recovering a classical limit problem.
An alternative localization of interest for future work is to study the limit of vanishing
horizon δ → 0 under the assumption of a normalized kernel.
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8 Appendix: Comparison with the Riesz potential kernel

To provide the technical basis for quantitative comparisons between the convolution
kernel that can be used to represent the nonlocal gradient and the Riesz potential
kernel, which plays the analogous role for the Riesz fractional gradient, we collect
here several useful properties about the quantity

Rs
δ = Qs

δ − I1−s

with s ∈ [0, 1).
Recalling the definitions of Qs

δ and I1−s in (2.7) and (2.1), (2.2), respectively, we
can represent Rs

δ as
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Rs
δ (x) =

⎧⎪⎪⎨
⎪⎪⎩
cn,s

∫ ∞

|x |
wδ(t) − 1

tn+s
dt if n + s − 1 > 0,

c1,0

∫ ∞

|x |
wδ(t)

t
dt + 1

π
log(|x |) if n = 1 and s = 0

for x ∈ R
n \ {0}; note that cn,s = n+s−1

γn,1−s
and c1,0 = 1

π
. As a consequence,

∇Rs
δ(x) = cn,s(1 − wδ(x))

x

|x |n+s+1 for x ∈ R
n, (8.1)

for all n ≥ 1 and s ∈ [0, 1). Observe that ∇Rs
δ ∈ L1(Rn; R

n) ∩ C∞(Rn; R
n) for

s ∈ (0, 1) and

Ds
δϕ − Dsϕ = ∇((Qs

δ − I1−s) ∗ ϕ) = ∇Rs
δ ∗ ϕ for all ϕ ∈ C∞

c (Rn). (8.2)

Since 1 − wδ is zero near the origin by (H3), Rs
δ is constant near the origin.

The Fourier transform of Rs
δ for any s ∈ [0, 1) satisfies

R̂s
δ(ξ) = Q̂s

δ(ξ) − 1

|2πξ |1−s
for |ξ | ≥ 1; (8.3)

if n+ s − 1 > 0, this follows directly from the well-known formula for Î1−s (see e.g.,
[24, Theorem 2.4.6]), and also the case n = 1 and s = 0 is standard; one can argue via
the fact that the distributional derivative of− 1

π
log(|·|) corresponds to the distribution

η �→ lim
r↓0

∫
(−r ,r)c

η(x)

x
dx for η ∈ S(R),

whose Fourier transform equals isgn (see e.g., [24, Eq. (5.1.12)]); note that in this case
R̂s

δ is only a tempered distribution on R
n , but for convenience we view it as a function

outside B(0, 1).
The following auxiliary result establishes estimates on the decay behavior of the

Fourier transform of Rs
δ and its derivatives.

Lemma 11 Let s ∈ [0, 1) and let β, ω ∈ N
n
0 be multi-indices. Then, there exists a

constant C > 0 independent of s such that

|ξ ||β|∣∣∂ω R̂s
δ (ξ)

∣∣ ≤ C for all |ξ | ≥ 1. (8.4)

Proof Throughout the proof, we use C to denote possibly different constants that do
not depend on s; note in particular, that we may ignore the constant cn,s , since it is
bounded for s ∈ [0, 1). Additionally, we may restrict to the case |β| ≥ |ω| + 2 since
|ξ | ≥ 1.

We observe first that by the boundedness of the Fourier transform from L1(Rn; C)

to C0(R
n; C) in combination with standard properties of the interaction between the
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Fourier transformwith derivatives (see e.g., [24, Proposition 2.3.22 (8)-(9)]), the claim
follows as soon as

∥∥∂β
(
(−2π i ·)ωRs

δ

)∥∥
L1(Rn;C)

≤ C < ∞, (8.5)

is established. The argument, which is detailed below, relies on repeated use of the
Leibniz rule and exploits the representation (8.1).

Let γ, γ ′, γ ′′, τ ∈ N
n
0 in the following be multi-indices not exceeding the order of

β. A straightforward calculation shows that

∣∣∣∣∂γ ′
(

x

|x |n+s+1

)∣∣∣∣ ≤ C

|x |n+s+|γ ′|

for x ∈ R
n \ {0}, and we have due to (H2) and (H3) that ∂γ ′′

wδ = 0 outside of the
annulus Aδ := B(0, δ) \ B(0, b0δ) if γ ′′ �= 0. Hence,

∣∣∣∣∂γ ′′
wδ(x)∂

γ ′
(

x

|x |n+s+1

)∣∣∣∣ ≤ C

(b0δ)n+s+|γ ′|1Aδ (x)

≤ C
(
(b0δ)

−n−1−|β| + 1
)
1Aδ (x) ≤ C1Aδ (x).

This allows us to infer in view of (8.1), the Leibniz rule, and again (H3), that

∣∣∂γ Rs
δ(x)

∣∣ ≤ C
(
|1 − wδ(x)| 1

|x |n+s+|γ |−1 + 1Aδ (x)
)

≤ C

(
1B(0,b0δ)c(x)

|x |n+s+|γ |−1 + 1Aδ (x)

) (8.6)

for γ �= 0. Moreover, if |τ | ≤ |ω|, we have
∣∣∂τ (−2π i x)ω

∣∣ ≤ C |x ||ω|−|τ |, (8.7)

and ∂τ (−2π i x)ω = 0 for |τ | > |ω|.
Another application of Leibniz’ rule together with (8.6) and (8.7) finally yields for

x ∈ R
n \ {0} that

∣∣∂β
(
(−2π i x)ωRs

δ(x)
)∣∣ ≤ C

(
1B(0,b0δ)c(x)

|x |n+s+|β|−|ω|−1 + 1Aδ (x)

)
.

It follows now via integration and under consideration of s + |β| − |ω| − 1 ≥ 1 that

∥∥∂β((−2π i ·)ωRs
δ)

∥∥
L1(Rn;C)

≤ C

(
(b0δ)−s−|β|+|ω|+1

s + |β| − |ω| − 1
+ δn

)

≤ C
(
(b0δ)

|ω|−|β| + 1 + δn
)
,

which gives (8.5). ��
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9 Appendix: Proof of density results

This part of the appendix is devoted to proving the density result stated in Theorem 1.
We begin with a lemma on the Leibniz rule for the distributionally defined spaces
Hs,p,δ(Ω). It serves as a technical tool for proving the approximate extension and
retraction results stated afterwards.

Lemma 12 Let s ∈ [0, 1), p ∈ [1,∞) andΩ ⊂ R
n be open and bounded. Further, let

u ∈ Hs,p,δ(Ω), identified with its extension by zero, and χ ∈ C∞
c (Rn). If Ω ′ ⊂ R

n is
an open and bounded set such that

(Ω ′ \ Ω) ∩ supp(χ) = ∅, (9.1)

then χu ∈ Hs,p,δ(Ω ′).

Proof Clearly, χu ∈ L p(Ω ′
δ). To determine the weak nonlocal gradient, we calculate

for any ϕ ∈ C∞
c (Ω ′; R

n) that

∫
Ω ′

δ

(χu) divsδ ϕ dx =
∫

Ω ′
δ

u
(
divsδ(χϕ) − Kχ (ϕᵀ)

)
dx

= −
∫

Ω ′
Ds

δu · (χϕ) dx −
∫

Ω ′
δ

uKχ (ϕᵀ) dx

= −
∫

Ω ′
χDs

δu · ϕ + Kχ (u) · ϕ dx .

Indeed, the first line exploits the Leibniz rule for the nonlocal divergence in (2.11),
while the second line follows directly from the formula defining the weak nonlocal
gradient, which is valid here since χϕ ∈ C∞

c (Ω; R
n) in light of the assumption (9.1).

For the third equality, we have used Fubini’s theorem and the boundedness of Kχ :
L p(Ω ′

δ) → L p(Ω ′; R
n) according to Lemma 2.

The calculation above shows that Ds
δ(χu) = χDs

δu + Kχ (u) on Ω ′, and hence,
u ∈ Hs,p,δ(Ω ′). ��

The next auxiliary resultswill be useful in the proofs of Theorem1 andProposition 3
to generate room for mollification arguments. The techniques are similar to the proof
of [35, Theorem 3.9].

Lemma 13 (Approximate extension and retraction) Let s ∈ [0, 1), p ∈ [1,∞), and
let Ω ⊂ R

n be an open and bounded set.

(i) If Ω is Lipschitz, then for any ε > 0 and u ∈ Hs,p,δ(Ω) there exists Ω ′ � Ω and
uε ∈ Hs,p,δ(Ω ′) such that

‖u − uε‖Hs,p,δ(Ω) < ε.

123



A variational theory for integral functionals involving...

(ii) If Ω−δ is Lipschitz, then for any ε > 0 and u ∈ Hs,p,δ
0 (Ω) there exists uε ∈

Hs,p,δ
0 (Ω) with supp(uε) � Ω−δ and

‖u − uε‖Hs,p,δ(Ω) < ε.

Proof (i) Given that the boundary of Ω is locally the graph of a Lipschitz function,
we can find a partition of unity χ0, χ1, . . . , χN+1 ⊂ C∞

c (Rn) and translation vectors
ζ1, . . . , ζN ∈ R

n such that

N+1∑
i=0

χi = 1 on Ωδ, χ0 ∈ C∞
c (Ω), χN+1 ∈ C∞

c (Ωc)

and

(supp(χi ) ∩ Ωc) + λζi � Ωc for i = 1, . . . , N . (9.2)

for all λ > 0 small enough. For these λ, we define

vλ := χ0u + χN+1u +
N∑
i=1

τλζi (χi u)

where τζ (v) := v( · − ζ ) denotes translation by ζ ∈ R
n of a function v : R

n → R.
Note that by construction, vλ ∈ Hs,p,δ(Ω) according to Lemma 12.

Next, we exploit continuity of the translation operator on L p and the translation
invariance of the nonlocal gradient to find λε > 0 such that uε := vλε satisfies

‖u − uε‖p
Hs,p,δ(Ω)

≤
N∑
i=1

‖χi u − τλεζi (χi u)‖p
L p(Ωδ)

+ ‖Ds
δ(χi u) − τλεζi D

s
δ(χi u)‖p

L p(Ω;Rn)
< ε p.

Finally, if Ω ′ � Ω is chosen such that

(supp(χi ) ∩ Ωc) + λεζi � (Ω ′)c for i = 1, . . . , N and supp(χN+1) � (Ω ′)c,

where the first condition is achievable in view of (9.2), Lemma 12 implies that even
uε ∈ Hs,p,δ(Ω ′), as desired.

(i i) A similar argument to that in (i) applies here as well, with the main difference
in the choice of the partition of unity, which is now considered for Ω−δ and translated
inwards instead of outwards as in (9.2). ��

With these tools at hand, one can now deduce the alternative characterizations for
Hs,p,δ(Ω) and Hs,p,δ

g (Ω) from Sections 2.2 and 2.3, respectively.
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Proof of Theorem 1 Case 1: Ω = R
n . Via a mollification argument we may suppose

that u ∈ C∞(Rn)∩ Hs,p,δ(Rn). Take χ ∈ C∞
c (Rn)with χ ≡ 1 on B(0, 1) and define

χ j := χ(·/ j) for j ∈ N. We then find that {χ j u} j∈N ⊂ C∞
c (Rn), χ j u → u in L p(Rn)

and

‖Ds
δu − Ds

δ(χ j u)‖L p(Rn;Rn)

≤ ‖(1 − χ j )D
s
δu‖L p(Rn;Rn) + CLip(χ j )‖u‖L p(Rn) → 0

as j → ∞, where we have used Lemma 2 and the fact that Lip(χ j ) ≤ Lip(χ)/ j .

Case 2: Ω a bounded Lipshitz domain. Lemma 13 (i) implies for every j ∈ N that
there is u j ∈ Hs,p,δ(Ω ′

j ) with some appropriately chosen Ω � Ω ′
j such that

‖u − u j‖Hs,p,δ(Ω) <
1

2 j
. (9.3)

We are now in the position to use a standard mollification procedure on u j , identified
with its extension to R

n by zero, with mollifying radius smaller than d(∂Ω, ∂Ω ′
j ) to

find a ϕ j ∈ C∞
c (Rn) with

‖u j − ϕ j‖Hs,p,δ(Ω) <
1

2 j
, (9.4)

so that the result follows from (9.3) and (9.4) along with the triangle inequality. ��
Proof of Proposition 3 Without loss of generality, consider g = 0. Utilizing a similar
strategy as above, one can apply Lemma 13 (i i) and suitably mollify the resulting
function uε ∈ Hs,p,δ

0 (Ω) with support compactly contained in Ω−δ . ��
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