Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

A Balian–Low type theorem for Gabor Riesz sequences of arbitrary density

Titelangaben

Verfügbarkeit überprüfen

Caragea, Andrei ; Lee, Dae Gwan ; Philipp, Friedrich ; Voigtlaender, Felix:
A Balian–Low type theorem for Gabor Riesz sequences of arbitrary density.
In: Mathematische Zeitschrift. 303 (2023) 2: 48. - 23 S.
ISSN 1432-1823 ; 0025-5874

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (402kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s00209-022-03182-6

Kurzfassung/Abstract

Gabor systems are used in fields ranging from audio processing to digital communication. Such a Gabor system (g,Λ) consists of all time-frequency shifts π(λ)g of a window function g∈L2(R) along a lattice Λ⊂R2. We focus on Gabor systems that are also Riesz sequences, meaning that one can stably reconstruct the coefficients c=(cλ)λ∈Λ from the function ∑λ∈Λcλπ(λ)g. In digital communication, a function of this form is used to transmit the digital sequence c. It is desirable for g to be well localized in time and frequency, since the transmitted signal will then be almost compactly supported in time and frequency if the sequence c has finite support. In this paper, we study what additional structural properties the signal space G(g,Λ), i.e., the span of the Gabor system, satisfies in addition to being a closed subspace of L2(R). The most well-known result in this direction—the Balian–Low theorem—states that if g is well localized in time and frequency and if (g,Λ) is a Riesz sequence, then G(g,Λ) is necessarily a proper subspace of L2(R). We prove a generalization of this result related to the invariance of G(g,Λ) under time-frequency shifts. Precisely, we show that if (g,Λ) is a Riesz sequence with g being well localized in time and frequency (precisely, g should belong to the so-called Feichtinger algebra), then π(μ)G(g,Λ)⊂G(g,Λ) holds if and only if μ∈Λ. For lattices of rational density, this was already known, with the proof based on Zak transform techniques. These methods do not generalize to arbitrary lattices, however. Instead, our proof for lattices of irrational density relies on combining methods from time-frequency analysis with properties of a special C∗-algebra, the so-called irrational rotation algebra.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Balian-Low theorem; Gabor systems; Time-frequency shifts; Riesz sequences; Feichtinger algebra; Irrational rotation algebra
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1007/s00209-022-03182-6
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:31645
Eingestellt am: 16. Feb 2023 12:16
Letzte Änderung: 06. Jun 2023 12:15
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/31645/
AnalyticsGoogle Scholar