
Mathematische Zeitschrift (2023) 303:48
https://doi.org/10.1007/s00209-022-03182-6 Mathematische Zeitschrift

A Balian–Low type theorem for Gabor Riesz sequences of
arbitrary density

Andrei Caragea1 · Dae Gwan Lee1 · Friedrich Philipp2 · Felix Voigtlaender3

Received: 12 August 2021 / Accepted: 22 November 2022 / Published online: 25 January 2023
© The Author(s) 2023

Abstract
Gabor systems are used in fields ranging from audio processing to digital communication.
Such a Gabor system (g,Λ) consists of all time-frequency shifts π(λ)g of a window function
g ∈ L2(R) along a latticeΛ ⊂ R

2.We focus on Gabor systems that are also Riesz sequences,
meaning that one can stably reconstruct the coefficients c = (cλ)λ∈Λ from the function∑

λ∈Λ cλ π(λ)g. In digital communication, a function of this form is used to transmit the
digital sequence c. It is desirable for g to be well localized in time and frequency, since
the transmitted signal will then be almost compactly supported in time and frequency if the
sequence c has finite support. In this paper, we study what additional structural properties the
signal space G(g,Λ), i.e., the span of the Gabor system, satisfies in addition to being a closed
subspace of L2(R). Themostwell-known result in this direction—theBalian–Low theorem—
states that if g is well localized in time and frequency and if (g,Λ) is a Riesz sequence, then
G(g,Λ) is necessarily a proper subspace of L2(R). We prove a generalization of this result
related to the invariance of G(g,Λ) under time-frequency shifts. Precisely, we show that if
(g,Λ) is a Riesz sequence with g being well localized in time and frequency (precisely, g
should belong to the so-called Feichtinger algebra), then π(μ)G(g,Λ) ⊂ G(g,Λ) holds if
and only if μ ∈ Λ. For lattices of rational density, this was already known, with the proof
based on Zak transform techniques. These methods do not generalize to arbitrary lattices,
however. Instead, our proof for lattices of irrational density relies on combining methods
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from time-frequency analysis with properties of a special C∗-algebra, the so-called irrational
rotation algebra.

Keywords Balian-Low theorem · Gabor systems · Time-frequency shifts · Riesz
sequences · Feichtinger algebra · Irrational rotation algebra

Mathematics Subject Classification 42C15 · 42C30 · 42C40

1 Introduction

The central idea of digital signal processing is to represent continuous signals in terms of
discrete sequences of coefficients. This is usually achieved by taking the inner products of
the signal with respect to some well-structured system of functions. In the area of applied
harmonic analysis, many different such systems have been proposed, with wavelet and Gabor
systems being the most popular among them. The most important property of such a system
is the ability to stably represent arbitrary signals; in this case, the system is called a frame [8].

Formally, aGabor system (g,Λ) consists of all time-frequency shiftsπ(λ)g of thewindow
function g ∈ L2(R) along a lattice Λ ⊂ R

2, where

[π(x, ω)g](y) = e2π iωy · g(y − x);

see [16]. When working with such a Gabor frame, the window function g should have a
good time-frequency localization, so that the frame coefficients faithfully reflect the time-
frequency behavior of the analyzed function. The Feichtinger algebra S0(Rd) [13, 21] is
a particularly popular window class. Among other advantages, choosing a window from
S0 ensures that the canonical dual window also belongs to the Feichtinger algebra [17],
so that for example the membership of a function f ∈ L2(Rd) in the modulation space
M p,q(Rd) can be characterized in terms of the decay properties of its frame coefficients.
One crucial obstruction, however, is that a Gabor system with window belonging to S0(Rd)

can not form an orthonormal basis—in fact not even a Riesz basis—for L2(Rd). We call this
phenomenon the S0 Balian-Low theorem (or the Feichtinger algebra Balian–Low theorem);
it is a consequence of the Amalgam Balian–Low theorem [2, Theorem 3.2]. The same no-go
type result holds for the case where g belongs to the space H

1(Rd) consisting of functions in
the L2-Sobolev space H1(Rd) whose Fourier transform also belongs to H1(Rd). This is the
classical Balian-Low theorem; see [16, Theorem 8.4.5] for the case of orthonormal bases,
and [10, Theorem 2.3] for the general case.

Yet, even though a Gabor system with g ∈ S0(Rd) cannot form a Riesz basis for all
of L2(Rd), it might still be a Riesz sequence, that is, a Riesz basis for its closed linear
span G(g,Λ), at least if G(g,Λ) is a proper subspace of L2(Rd). In this case, one might
wonder about further properties—in addition to being a proper subspace of L2(Rd)—that the
Gabor space G(g,Λ) has to have. One important property in time-frequency analysis is the
invariance of G(g,Λ) under time-frequency shifts Ta Mb. For lattices Λ of rational density
and for dimension d = 1, it was observed in [4] that if (g,Λ) is a Riesz sequence and if
g ∈ S0(R), then the set of parameters (a, b) ∈ R

2 such that G(g,Λ) is invariant under the
time-frequency shift Ta Mb is exactly equal to Λ. A multi-dimensional variant of this was
derived in [5].

These results generalize the S0 Balian-Low theorem to subspaces of L2(R). Indeed, to
derive the S0 Balian-Low theorem from the above result, note that if G(g,Λ) = L2(R) then
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G(g,Λ) is invariant under all time-frequency shifts, even under those with (a, b) /∈ Λ; hence,
g cannot belong to S0. A corresponding generalization of the classical Balian-Low theorem
was proved in [6]; a quantitative version can be found in [7].

We emphasize that in all articles [4–7] it is assumed that the generating lattice Λ has
rational density. This restriction is needed in order to utilize the Zak transform which is used
extensively in [4–7]. It is thus natural to ask whether the results in [4] and [6] still hold for
lattices with irrational density.

In a sense, this question has analogies with the research concerning the regularity of the
canonical dual window of a Gabor frame. In 1997 it was shown (see [14, Theorem 3.4]) that
if g ∈ S0(Rd) generates a Gabor frame for L2(Rd) over a lattice of rational density, then
the canonical dual window also belongs to S0(Rd). It was conjectured in the same article
that this property continues to hold for general lattices. Six years later, this conjecture was
confirmed by Gröchenig and Leinert [17] by using C∗-algebra methods.

Here, we likewise extend the result in [4] from lattices of rational density to arbitrary
lattices:

Theorem 1 If g ∈ S0(R) and Λ ⊂ R
2 is a lattice such that the Gabor system (g,Λ) is a

Riesz basis for its closed linear span G(g,Λ), then the time-frequency shifts Ta Mb that leave
G(g,Λ) invariant satisfy (a, b) ∈ Λ.

In other words, the following conditions cannot hold simultaneously: (i) g ∈ S0(R), (ii)
(g,Λ) is a Riesz sequence, (iii) G(g,Λ) is invariant under Ta Mb with some (a, b) /∈ Λ.
One can easily find examples where only two of these conditions hold simultaneously. For
instance, conditions (i) and (ii) hold for the Gaussian g(x) = e−πx2 and Λ = Z × 2Z;
conditions (i) and (iii) hold for g(x) = (1 − 4|x |) 1[− 1

4 , 14 ](x) and Λ = Z × 2Z; conditions
(ii) and (iii) hold for all the cases in Example 6 below. Here, 1S denotes the characteristic
function of S ⊂ R.

As indicated above, the Zak transform is a powerful tool for analyzing Gabor systems
generated by lattices with rational density; yet, it is not of much use in the case of irrational
density lattices. Consequently, the methods used in the present paper differ substantially
from those in [4–7]. Instead of applying the Zak transform and thus dealing with functions
on R

2, we work directly with the given objects and exploit the rich theory of time-frequency
analysis. Along the way, we obtain several new statements related to time-frequency shift
invariance that are interesting in their own right.

The proof of Theorem 1 consists of several steps. First, for g ∈ S0(R) and only assuming
that (g,Λ) is a frame sequence—that is, a frame for its closed linear span— we prove the
following dichotomy:

Either (g,Λ) spans all of L2(R), or the set of (a, b) ∈ R
2 for which

Ta Mb leaves G(g,Λ) invariant is a lattice containing Λ

as a sublattice;
(D)

see Theorem 8. This result significantly reduces the range of parameters (a, b) that we
need to consider. Next, we give a characterization for the invariance of G(g,Λ) under a
time-frequency shift Ta Mb with (a, b) /∈ Λ in terms of the adjoint system of (g,Λ); see
Theorem 11. This characterization holds for general g ∈ L2(R), not only for g ∈ S0(R).
Combining this characterization with a deep existing result about traces of projections in the
so-called irrational rotation algebra (see [26, 27]), we arrive at the conclusion of Theorem 1.

With Theorem 1 established for g in the Feichtinger algebra, it is natural to ask whether
the same statement holds in the setting of the classical Balian-Low theorem, that is, when g
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has finite uncertainty product
(∫

x2|g(x)|2 dx
) · (∫ ω2 |̂g(ω)|2 dω

)
< ∞, a condition which

we simply write as g ∈ H
1. Unfortunately, we were not able to prove a full-fledged version

of Theorem 1 for g ∈ H
1; the best we could do is to show that the dichotomy (D) described

above for g ∈ S0 still holds for g ∈ H
1.

The outline of the paper is as follows: After recalling the necessary background on
Janssen’s representation, time-frequency shift invariance, symplectic operators, and the two
spaces S0(R) and H

1 in Sect. 2, the paper proper starts in Sect. 3, where we prove the
dichotomy (D) described above, for g lying in a broad function space which contains both
S0(R) and H

1. Next, in Sect. 4 we show that one can reduce to the case of a separable lattice
Λ = αZ × βZ, with an additional time-frequency shift of the form Tα/ν for some ν ∈ N≥2.
For this setting, we then derive a characterization in terms of the adjoint Gabor system.
Throughout Sect. 4, the generating function g is only assumed to be in L2(R). The paper
culminates in Sect. 5, where we prove Theorem 1 using an auxiliary result which relies on
irrational rotation algebras. Appendix A contains a proof of the auxiliary result including a
short treatise on irrational rotation algebras.

2 Preliminaries

For a, b ∈ R and f ∈ L2(R) we define the operators of translation by a and modulation by
b as

Ta f (x) := f (x − a) and Mb f (x) := e2π ibx f (x),

respectively. Both Ta and Mb are unitary operators on L2(R) and hence so is the time-
frequency shift

π(a, b) := Ta Mb = e−2π iab MbTa .

A (full rank) lattice Λ ⊂ R
2 is any set of the form Λ = AZ

2 with an invertible matrix
A ∈ R

2×2. The density of Λ is defined by d(Λ) = |det A|−1. Note that AZ
2 = Z

2 if and
only if A ∈ Z

2×2 and det A = ±1. This will be used heavily in the proof of Proposition 5
below.

A lattice Λ is called separable if A can be chosen to be diagonal, i.e., Λ = αZ×βZ with
α, β > 0. The next lemma shows that every lattice can be transformed into a separable one
by means of a symplectic matrix; this will be used frequently.

Lemma 2 Let A ∈ R
2×2 be a non-singular matrix. Then there exists a matrix C ∈ R

2×2 with
det C = 1 such that C A is diagonal, i.e., C AZ

2 is separable.

Proof Write A = (
a b
c d

)
and noteΔ := ad −bc �= 0. If a �= 0, chooseC =

(
1+bc/Δ −ab/Δ
−c/a 1

)
.

A simple calculation shows that C A = diag(a,Δ/a) and det C = 1. In the case a = 0 we

have b �= 0 �= c as A is non-singular. Then C :=
( −d/b 1

−1 0

)
satisfies det C = 1 and

C A = diag(c,−b). �	
For a subset M ⊂ L2(R), we denote its closure by M . For g ∈ L2(R) and a lattice

Λ ⊂ R
2, we set

(g,Λ) := {
π(λ)g : λ ∈ Λ

}
and G(g,Λ) := span(g,Λ) ⊂ L2(R).

We use the normalization F f (ω) = f̂ (ω) = ∫
R

f (x) e−2π i xω dx for the Fourier trans-
form of f ∈ L1(R). It is well-known that F extends to a unitary map F : L2(R) → L2(R).

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



A Balian–Low type theorem for Gabor Riesz... Page 5 of 22 48

A sequence { fn}n∈Z in a separable Hilbert space H is called

• a Bessel sequence in H (with a Bessel bound B) if there is a constant B > 0 such that
∑

n∈Z
|〈 f , fn〉|2 ≤ B ‖ f ‖2 for all f ∈ H;

• a frame for H (with frame bounds A and B) if there exist constants 0 < A ≤ B < ∞
such that

A ‖ f ‖2 ≤
∑

n∈Z
|〈 f , fn〉|2 ≤ B ‖ f ‖2 for all f ∈ H;

• aRiesz sequence inH (withRiesz bounds A and B) if there are constants 0 < A ≤ B < ∞
such that

A ‖c‖2

2

≤
∥
∥
∥

∑

n∈Z
cn fn

∥
∥
∥
2 ≤ B ‖c‖2


2
for all c = {cn}n∈Z ∈ 
2(Z);

• a Riesz basis forH (with Riesz bounds A and B) if it is a complete Riesz sequence inH
(with Riesz bounds A and B).

It is known [8, Theorem 5.4.1] that a Riesz basis for H is a frame for H, in which case the
frame bounds coincide with the Riesz bounds. In fact, a sequence inH is a Riesz basis forH
if and only if it is an exact frame forH; see [8, Theorem 7.1.1]. Here, a frame is called exact
if it ceases to be a frame when an arbitrary element is removed.

2.1 Bessel vectors and Janssen’s representation

Let Λ = αZ × βZ be a separable lattice with α, β > 0. The adjoint lattice of Λ is defined
as Λ◦ = 1

β
Z × 1

α
Z. We say that g ∈ L2(R) is a Bessel vector for Λ if the system (g,Λ) is

a Bessel system in L2(R), meaning that the analysis operator CΛ,g corresponding to (g,Λ)

is bounded as an operator from L2(R) to 
2(Z2). It is defined by

CΛ,g f = (〈 f , Tmα Mnβ g〉)m,n∈Z, f ∈ L2(R).

We denote the set of Bessel vectors for Λ by BΛ. This is a linear subspace of L2(R) which
is dense because it contains the Schwartz space S(R); see [16, Corollary 6.2.3]. It is well
known that BΛ = BΛ◦ (see [28, Theorem 2.2(a)]) and that

∑

m,n∈Z
〈 f , Tmα Mnβ g〉〈Tmα Mnβh, u

〉 = 1

αβ

∑

k,
∈Z

〈
h, T k

β
M 


α
g
〉〈

T k
β

M 

α

f , u
〉

(1)

whenever at least three of f , g, h, u ∈ L2(R) are Bessel vectors forΛ; this follows from [22,
Proposition 2.4]. Formula (1) yields the so-called Janssen representation of the cross frame
operator SΛ,g,h : L2(R) → L2(R) associated to Bessel vectors g, h ∈ BΛ. This operator is
defined by

SΛ,g,h f :=
∑

m,n∈Z
〈 f , Tmα Mnβ g〉 · Tmα Mnβh, f ∈ L2(R). (2)

Equation (1) implies that

SΛ,g,h f = 1

αβ

∑

k,
∈Z

〈
h, T k

β
M 


α
g
〉 · T k

β
M 


α
f if f , g, h ∈ BΛ. (3)

The series in Equations (2) and (3) both converge unconditionally in L2(R).
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2.2 Time-frequency shift invariance

For a closed linear subspace G ⊂ L2(R), we denote by I(G) the set of all pairs (a, b) ∈ R
2

such that G is invariant under the time-frequency shift π(a, b); that is,

I(G) := {
z ∈ R

2 : π(z)G ⊂ G}
.

If G = G(g,Λ) for some g ∈ L2(R) and a lattice Λ ⊂ R
2, then clearly Λ ⊂ I(G). Any

time-frequency shift π(z) with z ∈ I(G)\Λ will be called an additional time-frequency shift
for G(g,Λ). For Gabor spaces G = G(g,Λ), the set I(G) has some additional structure:

Lemma 3 ([3, Proposition A.1]) Let g ∈ L2(R), let Λ ⊂ R
2 be a lattice, and define

G := G(g,Λ). If z ∈ R
2, then z ∈ I(G) if and only if π(z)g ∈ G. Moreover, I(G) is a

closed additive subgroup of R
2.

Lemma 3 shows that z ∈ I(G) implies −z ∈ I(G), i.e., π(z)G ⊂ G and π(z)−1G ⊂ G.
Hence, we have π(z)G = G whenever z ∈ I(G).

The next lemma characterizes the case when G is invariant under all time-frequency shifts.

Lemma 4 For a nonempty closed linear subspace G ⊂ L2(R), G �= {0}, we have I(G) = R
2

if and only if G = L2(R).

Proof Clearly, ifG = L2(R), then I(G) = R
2. To prove the converse, assume thatI(G) = R

2

and let f ∈ G⊥ and g ∈ G\{0}. Then 〈 f , π(z)g〉 = 0 for all z ∈ R
2, so that the short-time

Fourier transform Vg f of f with window g satisfies Vg f ≡ 0. By [16, Corollary 3.2.2] and
since g �= 0, this implies f = 0. We have thus shown G⊥ = {0}, whence G = L2(R), since
G is a closed subspace of L2(R). �	

2.3 Symplectic operators

It is often useful to reduce a statement involving a non-separable lattice to one that involves
a separable lattice, since separable lattices are usually easier to handle. For this reduction,
we will use so-called symplectic operators (see [16, Sect. 9.4]). Since we are working in
dimension d = 1, a matrix B ∈ R

2×2 is symplectic if and only if det B = 1; see [16,
Lemma 9.4.1]. For any such matrix B, it is shown in [16, Eq. (9.39)] that there exists a
unitary operator UB : L2(R) → L2(R) such that

UBρ(z) = ρ(Bz)UB , z ∈ R
2, (4)

where (as in [16, Page 185 and Eq. (9.25)])

ρ(a, b) := eπ iab · π(a, b).

In the sequel, we fix for each B ∈ R
2×2 with det B = 1 one choice of the operator UB , and

for functions g ∈ L2(R), closed subspaces G ⊂ L2(R), and sets Λ ⊂ R
2 we write

gB := UB g, GB := UB G, and ΛB := BΛ.

As shown in [16, Page 197], given B, C ∈ R
2×2 with det B = det C = 1, we have UBUC =

θB,C UBC for some θB,C ∈ C with |θB,C | = 1.
Note that (4) implies

π(z)g ∈ G ⇐⇒ π(Bz)gB ∈ GB , z ∈ R
2. (5)
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Therefore, (g,Λ) is a frame (Riesz basis, resp.) for its closed linear span G if and only if
(gB ,ΛB) is a frame (Riesz basis, resp.) for its closed linear span GB . Thanks to Lemma 3,
the equivalence (5) also implies that

I(GB) = B I(G). (6)

2.4 The Feichtinger algebra

We denote by S0(R) the Feichtinger algebra, which is the space of functions f ∈ L2(R)

such that 〈 f , π(·)ϕ〉 ∈ L1(R2) for some (and hence every) Schwartz function ϕ �= 0. It is
known that a function f ∈ L2(R) belongs to S0(R) if and only if 〈 f , π(·) f 〉 ∈ L1(R2). See
[16, Proposition 12.1.2] for several characterizations of S0(R) and their proofs.

Recall that S0(R) is invariant under each operatorUB (cf. [16, Proposition 12.1.3]), so that
g ∈ S0(R) always implies gB ∈ S0(R) for B ∈ R

2×2 with det B = 1. Also, each g ∈ S0(R)

is a Bessel vector for any (separable) lattice (see e.g. [16, Propositions 6.2.2 and 12.1.4]).
Since for g, h ∈ S0(R) and any α, β > 0 the sequence

(〈h, Tmα Mnβ g〉)m,n∈Z belongs to


1(Z2) (see [16, Corollary 12.1.12]), it follows from (3) and from the density of BΛ in L2(R)

that

SΛ,g,h = 1

αβ

∑

k,
∈Z

〈
h, T k

β
M 


α
g
〉 · T k

β
M 


α
with Λ = αZ × βZ, (7)

where the series converges absolutely in operator norm.

2.5 The spaceH
1

Let H1(R) denote the space of all functions f in L2(R) for which the weak derivative f ′
exists and belongs to L2(R). In other words, H1(R) = W 1,2(R) is an L2-Sobolev-space.
It is well known (see [23, Theorem 7.16]) that each f ∈ H1(R) has a representative that
is absolutely continuous on R and whose classical derivative exists and coincides with the
weak derivative f ′ almost everywhere.

By H
1 we denote the space of all functions f ∈ H1(R) whose Fourier transform f̂ also

belongs to H1(R). Equivalently, a function f ∈ L2(R) is inH
1 if and only if f ′, X f ∈ L2(R),

where X f denotes the function R → C, x �→ x f (x). The space H
1 also coincides with the

modulation space M2
m(R)with the weight m(x, ω) = 1+√

x2 + ω2; see [18, Corollary 2.3].
As shown in [6, Proof of Theorem 1.4], the space H

1 is invariant under symplectic oper-
ators, meaning that UB g ∈ H

1 if g ∈ H
1 and B ∈ R

2×2 with det B = 1.
It is easily seen that both S0(R) and H

1 contain the Schwartz space S(R). To help the
readers’ understanding, we provide some examples of functions in L2(R)\(S0(R) ∪ H

1),
(S0(R) ∩ H

1)\S(R), S0(R)\H
1, and H

1\S0(R).

Examples. The characteristic function f := 1[− 1
2 , 12 ] of [− 1

2 ,
1
2 ] belongs to neither S0(R)

nor H
1, since S0(R) ∪ H

1 ⊂ C(R) (see Lemma 7 below). The weak derivative of f is given
by f ′(x) = δ(x + 1

2 ) − δ(x − 1
2 ) /∈ L2(R), where δ denotes the Dirac delta. Note that

1
2π i f̂ ′(ω) = ω f̂ (ω) = 1

π
sin(πω) /∈ L2(R).

The hat function h(x) := (1−|x |) 1[−1,1](x) = ( f ∗ f )(x) is continuous but not smooth,
hence, does not belong to S(R). However, h ∈ S0(R) ∩ H

1. Indeed, one can directly check
〈h, π(·)h〉 ∈ L1(R2) to show that h ∈ S0(R) (see e.g., [12, Chapter 16]). Also, we have
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h ∈ H
1 since both h′ = 1[−1,0) − 1[0,1] (defined a.e.) and Xh(x) = x (1−|x |) 1[−1,1](x) are

square-integrable. Note that 1
2π i ĥ′(ω) = ω ĥ(ω) = ω ( f̂ (ω))2 = 1

π2ω
sin2(πω) ∈ L2(R).

It is shown in [2, Example 3.3] that g(x) = ∑∞
n=1 n−3/2 h(2(x − n)) is not in H

1.
However, using [15, Theorem 3.2.13] and the fact that h ∈ S0(R), we have g ∈ S0(R),
hence, g ∈ S0(R)\H

1. On the other hand, a function in H
1\S0(R) is constructed in [2,

Example 3.4].

3 Time-frequency shift invariance: a closer look

In this section, we first establish a certain trichotomy concerning the set of invariant time-
frequency shifts. We then show that one of the three cases of the trichotomy is excluded if
the generator function g is “sufficiently nice”.

The next proposition establishes the trichotomy: the invariance set I(G) either fills the
whole space R

2, or it consists of equispaced lines that are aligned with the lattice, or it is
a refinement of Λ (and in particular a lattice itself). Note that this holds regardless of the
regularity of the generator g or the (frame) properties of the Gabor system (g,Λ).

Proposition 5 Let H be a closed additive subgroup of R
2 and suppose that H ⊃ Λ for a

non-degenerate lattice Λ ⊂ R
2. Then there exist λ1, λ2 ∈ Λ satisfying Λ = Z · λ1 + Z · λ2

and m, n ∈ N≥1 such that exactly one of the following conditions holds:

(1) H = R
2.

(2) H = R · λ1 + Z · λ2
n .

(3) H = Z · λ1
m + Z · λ2

n .

In particular, if Λ ⊂ R
2 is a lattice and g ∈ L2(R), then one of the above cases holds for

H = I(G(g,Λ)).

Proof By [19, Theorem 9.11], there are α, β ∈ N0 and linearly independent vectors
x1, . . . , xα, y1, . . . , yβ ∈ R

2 (hence, α + β ≤ 2) such that

H = R x1 + · · · + R xα + Z y1 + · · · + Z yβ .

Since H contains the non-degenerate lattice Λ (and thus two linearly independent vectors),
we must have α + β = 2. Hence, there are three cases:

(i) (α, β) = (2, 0) and hence H = R
2,

(ii) (α, β) = (1, 1), so that H = Rv + Zw with linearly independent v,w ∈ R
2,

(iii) (α, β) = (0, 2), so that H is a (non-degenerate) lattice.

Clearly, in Case (i), Condition (1) holds.
Let us consider the case (ii): H = R · v + Z · w. Let Λ = Z · μ + Z · λ be an arbitrary

representation of Λ. Since Λ ⊂ H , there exist m, n ∈ Z and s, t ∈ R such that

[μ, λ] = [sv + mw, tv + nw] = [v,w]
[

s t
m n

]

.

Note that μ, λ are linearly independent, and hence sn − tm �= 0, so that d = (sn − tm)−1

is well-defined. Furthermore, we see

[v,w] = d · [μ, λ]
[

n −t
−m s

]

,
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which shows that v = d(nμ − mλ) and thus R · v = R · λ1 with some λ1 ∈ Λ. By rescaling
λ1, we can ensure that 1

k λ1 /∈ Λ for each k ∈ Z \ {−1, 0, 1}. Note because of R · v = R · λ1
that H = R · λ1 + Z · w.

Now, there exists λ2 ∈ Λ such that Λ = Z · λ1 + Z · λ2. Indeed, writing Λ = AZ
2

with A = [a1, a2] ∈ R
2×2 invertible, there exist i, j ∈ Z such that λ1 = ia1 + ja2. The

numbers i, j are necessarily coprime, since 1
k λ1 /∈ Λ for k ∈ Z \ {−1, 0, 1}. Hence, by

Bézout’s lemma there exist k, 
 ∈ Z such that i
 − jk = 1. Set λ2 = ka1 + 
a2. Then

[λ1, λ2]Z2 = A
[

i k
j 


]
Z
2 = AZ

2 = Λ. Since λ2 ∈ Λ ⊂ H , there exist σ ∈ R and ν ∈ Z

such that λ2 = σλ1 +νw. Then ν �= 0 and so H = R ·λ1 +Z · ( λ2
ν

− σ
ν
λ1) = R ·λ1 +Z · λ2|ν| .

Hence, Condition (2) of the statement of the proposition holds.
Assume now that Case (iii) holds: H is a lattice, i.e., H = Z · v + Z · w with linearly

independent vectors v,w ∈ R
2.WriteΛ = Z ·μ+Z ·λwith linearly independent λ,μ ∈ R

2.
Then, because of Λ ⊂ H , there exist a, b, c, d ∈ Z such that

[μ, λ] = [av + cw, bv + dw] = [v,w]
[

a b
c d

]

=: [v,w] · A, (8)

with A ∈ Z
2×2. Let A = M DN−1 be the Smith canonical form of A (see, for instance [24,

Theorem 26.2] or [20, Theorem 3.8]), where M, N , D ∈ Z
2×2 with det M = det N = 1 and

D is a diagonal matrix. Note that A (and hence D) is invertible; this follows from (8) since
μ and λ are linearly independent. Moreover, note that [μ, λ]N D−1 = [v,w]M .

Define λ1, λ2 ∈ Λ via [λ1, λ2] := [μ, λ]N . Then

Λ = [μ, λ]Z2 = [μ, λ]NZ
2 = [λ1, λ2]Z2 = Z · λ1 + Z · λ2.

Further, writing D = diag(m, n) with m, n ∈ Z \ {0}, we see
H = [v,w]Z2 = [v,w]MZ

2 = [μ, λ]N D−1
Z
2 = [λ1, λ2]D−1

Z
2 = Z · λ1|m| + Z · λ2|n| .

This completes the proof of the proposition, since the conditions (1)–(3) are clearly mutually
exclusive. �	

We now provide some examples for the three cases in Proposition 5. In particular, we
show that all three cases can occur for H =I(G(g,Λ))with g ∈ L2(R) and a latticeΛ ⊂ R

2

such that (g,Λ) is a Riesz sequence.

Example 6

Case (1) : Let g := 1[0,1]. Then (g, Z × Z) is an orthonormal basis for G = G(g, Z × Z) =
L2(R) and thus I(G) = R

2 by Lemma 4.
Case (2) : We will show that for every lattice Λ ⊂ R

2 with density smaller than 1, there
exists a function g ∈ L2(R) such that (g,Λ) is a Riesz sequence andCase (2) holds
for H =I(G(g,Λ)). Due to Eq. (6) and Lemma 2, it suffices to consider separable
lattices Λ = αZ × βZ with α, β > 0, αβ > 1. For simplicity of presentation, we
will set α = 1. For m ∈ Z, define Em := m +[0, 1

β
], and let g := √

β ·1E0 . Then

Tm Mnβ g(x) = √
β · e2π inβ(x−m) · 1[0, 1

β
](x − m)

= √
β e−2π imnβ · e2π inβx · 1Em (x).

Hence, for each m ∈ Z the system (Tm Mnβ g)n∈Z is an orthonormal basis for the
subspace L2(Em) of L2(R). Note that since 1

β
< 1, we have [0, 1

β
] � [0, 1] and

therefore E := ⋃
m∈Z Em � R. The system (g,Λ) is thus an orthonormal basis
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for G = G(g,Λ) = L2(E) � L2(R). It is easy to see that Tx g ∈ G if and only
if x ∈ Z. Moreover, we have Mωg = √

β · e2π iω(·) · 1E0 ∈ L2(E0) ⊂ G for all
ω ∈ R. Therefore, Lemma 3 implies that I(G) = Z × R.

Case (3) : Let g := 1
2 1[− 5

6 ,− 2
3 ] + 2 1[0, 16 ] + 2 1[ 13 , 12 ] + 1[ 12 ,1]. Then (g, Z × 3Z) is a Riesz

basis for G = G(g, Z × 3Z) � L2(R) and I(G) = 1
2Z × 3Z (see [4, Example 1]

for more details).

Note that all the functions g in Example 6 are well localized in time but not in frequency.
In the remainder of this section, we show that Case (2) in Proposition 5 cannot occur if
(g,Λ) is a frame sequence with a sufficiently nice window g. In this case, the trichotomy
from Proposition 5 becomes a dichotomy. By g being “sufficiently nice” we mean that
g ∈ W(C, 
2), where

W(C, 
2) := {
f ∈ L2(R) : UB f ∈ W (C, 
2) for all B ∈ R

2×2 with det B = 1
}
.

Here, W (C, 
2) is the so-calledWiener Amalgam space consisting of all continuous functions
f : R → C satisfying

‖ f ‖W (C,
2) :=
( ∑

k∈Z
sup

x∈[k−1,k+1]
| f (x)|2

)1/2

< ∞.

Recall from Sect. 2.3 that if g ∈ W(C, 
2) and if B, C ∈ R
2×2 satisfy det B = det C = 1,

then UCUB g = θB,C UC B g ∈ W (C, 
2) for a suitable θB,C ∈ C. This shows that
UB g ∈ W(C, 
2) whenever g ∈ W(C, 
2) and det B = 1.

The following lemma shows that the function classes considered in this paper (namely,
S0(R) and H

1) are contained in W(C, 
2).

Lemma 7 We have S0(R) ⊂ W(C, 
2) and H
1 ⊂ W(C, 
2).

Proof If g ∈ S0(R), then [16, Proposition 12.1.3] shows that UB g ∈ S0(R) for each B ∈
R
2×2 with det B = 1. Similarly, if g ∈ H

1, then [6, Proof of Theorem 1.4] shows thatUB g ∈
H

1 for each B ∈ R
2×2 with det B = 1. Therefore, it suffices to show that S0(R) ⊂ W (C, 
2)

and H
1 ⊂ W (C, 
2).

First, if f ∈ S0(R), then [16, Proposition 12.1.4] shows that f̂ ∈ L1(R). By Fourier
inversion, this implies that f has a continuous representative. Furthermore, by [16, Proposi-
tion 12.1.4] we have f ∈ W (L∞, 
1). Combined with the embedding 
1(Z) ↪→ 
2(Z), this
easily implies f ∈ W (L∞, 
2) and thus f ∈ W (C, 
2).

Next, if f ∈ H
1 ⊂ H1 = W 1,2(R), then [23, Theorem 7.16] shows (after changing f on a

null-set) that f is absolutely continuous, and hence continuous, and satisfies f (x)− f (y) =∫ x
y f ′(t) dt for all y < x , where f ′ ∈ L2(R) is the weak derivative of f . Now, note that if

n ∈ Z and x, y ∈ [n − 1, n + 1], then

| f (x)| ≤ | f (y)| +
∫ max{x,y}

min{x,y}
| f ′(t)| dt ≤ | f (y)| +

∫ n+1

n−1
| f ′(t)| dt

≤ | f (y)| + √
2

(∫ n+1

n−1
| f ′(t)|2 dt

)1/2

,

and hence | f (x)|2 ≤ 2| f (y)|2 + 4
∫ n+1

n−1 | f ′(t)|2dt . Integration over y ∈[n − 1, n + 1] gives

2| f (x)|2 ≤ 2
∫ n+1

n−1
| f (y)|2 dy + 8

∫ n+1

n−1
| f ′(t)|2 dt,
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for all x ∈ [n − 1, n + 1], which finally implies

‖ f ‖2W (C,
2)
≤

∑

n∈Z

(∫ n+1

n−1
| f (y)|2 dy + 4

∫ n+1

n−1
| f ′(t)|2 dt

)

� ‖ f ‖2L2 + ‖ f ′‖2L2 <∞,

and hence f ∈ W (C, 
2). �	
We now show that Case (2) in Proposition 5 cannot occur if (g,Λ) is a frame sequence

with generator g ∈ W(C, 
2) \ {0}.
Theorem 8 Let g ∈ W(C, 
2)\{0} and let Λ ⊂ R

2 be a lattice such that (g,Λ) is a frame
for G = G(g,Λ). Then either I(G) = R

2 or there exist λ1, λ2 ∈ Λ and m, n ∈ N≥1 such
that

Λ = Z · λ1 + Z · λ2 and I(G) = Z · λ1
m + Z · λ2

n . (9)

Proof The claim is equivalent to the statement that either Case (1) or (3) in Proposition 5
holds for H = I(G). Since Proposition 5 shows the trichotomy into Cases (1)–(3), it is
enough to show that Case (2) in Proposition 5 cannot hold for H . Therefore, we assume
towards a contradiction that Case (2) holds, i.e., there are λ1, λ2 ∈ Λ and n ∈ N≥1 such that
Λ = Z · λ1 + Z · λ2 and I(G) = Z · λ1

n + R · λ2.

Step 1. We first derive a contradiction for the case λ1 = (α, 0)� and λ2 = (0, β)� with
some α, β > 0. Then Λ = αZ × βZ, and {0} × R ⊂ I(G). For f ∈ G we thus have
Mω f ∈ G for all ω ∈ R. By [29, Theorem 9.17] (applied to the translation invariant space
F−1G, with F denoting the Fourier transform), there exists a Borel measurable set E ⊂ R

such that G = L2(E), where we consider L2(E) as a closed subspace of L2(R), in the sense
that L2(E) = { f ∈ L2(R) : f = 0 a.e. on R\E}.

Our goal is to show that E = R, up to null-sets. This will then imply G = L2(E) = L2(R)

and hence I(G) = R
2, providing the desired contradiction. Towards proving E = R, let us

consider for given f ∈ L2(R) the continuous function Γ f : R → R defined by

Γ f (ω) := 〈SMω f , Mω f 〉, ω ∈ R,

where S : L2(R) → G denotes the frame operator of (g,Λ). By [16, Proposition 7.1.1], the
operator S has the Walnut representation

〈S f , h〉 = β−1
∑

n∈Z
〈Gn · T n

β
f , h〉 ∀ f , h ∈ L∞(R) with compact support,

where only finitely many terms of the sum do not vanish, and where

Gn(x) :=
∑

m∈Z
g(x − mα) · g(x − n

β
− mα), x ∈ R, n ∈ Z.

The fact that g ∈ W (C, 
2) easily implies that the series defining Gn converges locally
uniformly, and that the Gn are continuous functions. Since Gn is also α-periodic, this means
that each Gn is bounded.

Now, since multiplication with Gn commutes with the modulation Mω, using the identity

Tn/β Mω = e−2π i n
β
ω MωTn/β , we get

Γ f (ω) = β−1
∑

n∈Z
e−2π i n

β
ω〈Gn · T n

β
f , f 〉 ∀ f ∈ L∞

c (R), (10)

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



48 Page 12 of 22 A. Caragea et al.

where L∞
c (R) denotes the space of functions f ∈ L∞(R) with compact support, and where

there are only finitely many n ∈ Z (depending only on f , but not on the choice of ω) for
which 〈Gn · T n

β
f , f 〉 �= 0.

Since (g,Λ) is a frame for G and since Mω f ∈ G for all ω ∈ R and all f ∈ G, there exists
A > 0 such that Γ f (ω) = 〈SMω f , Mω f 〉 ≥ A‖ f ‖2

L2 for all f ∈ G. Let us write L∞
c (E)

for the set of all compactly supported f ∈ L∞(R) which satisfy f = 0 on R\E , and note
that L∞

c (E) ⊂ L2(E) = G. For f ∈ L∞
c (E), integrate the estimate Γ f (ω) ≥ A‖ f ‖2

L2 over
[0, β] and apply Equation (10) to see

β A ‖ f ‖2L2 ≤ β−1
∑

n∈Z
〈Gn · T n

β
f , f 〉

∫ β

0
e−2π i n

β
ω dω = 〈G0 f , f 〉 = 〈h f , f 〉,

where h := G0 = ∑
m∈Z |Tmαg|2. We have thus shown

∫

E

(
h(x) − β A

) · | f (x)|2 dx ≥ 0 ∀ f ∈ L∞
c (E).

Using standard arguments, this implies that h(x) ≥ β A for almost all x ∈ E .
Since Tmα g ∈ G = L2(E) and thus Tmα g(x) = 0 for almost all x ∈ R\E and arbitrary

m ∈ Z, it follows that h(x) = 0 for almost all x ∈ R\E . Recall from above that h(x) ≥ β A
for almost all x ∈ E ; thus, h(x) ∈ {0}∪ [β A,∞) almost everywhere. Also recall from above
that h = G0 is continuous. Hence, the open set h−1((0, β A)) has measure zero and is thus
empty; therefore, we see h(x) ∈ {0} ∪ [β A,∞) for all x ∈ R. By the intermediate value
theorem, this implies that h(x) ≥ β A for all x ∈ R (since h ≥ |g|2 and g �≡ 0) and thus,
indeed, E = R (up to null-sets), since h(x) = 0 a.e. on R\E .

Step 2. Let Λ be a general lattice. Recall that Λ = Zλ1 + Zλ2 and I(G) = Z
λ1
n + Rλ2.

By Lemma 2 there exists B ∈ R
2×2 with det B = 1 such that B[λ1, λ2] = diag(α, β) for

certain α, β ∈ R \ {0}. We thus obtain ΛB = BΛ = B[λ1, λ2]Z2 = |α|Z × |β|Z and

I(GB) = BI(G) = B[λ1, λ2] diag( 1n , 1)(Z × R)

= diag( |α|
n , |β|)(Z × R) = |α|

n Z × R;
see (6). In particular, {0} × R ⊂ I(GB). Hence, since gB = UB g ∈ W(C, 
2) and (gB ,ΛB)

is a frame for GB = UBG � L2(R) (cf. Sect. 2.3), we are in the situation of Step 1, which
we proved to be impossible. �	

By combining Theorem 8 and Lemma 7, we obtain the following corollary.

Corollary 9 Let g ∈ S0(R) \ {0} or g ∈ H
1 \ {0} and let Λ ⊂ R

2 be a lattice such that (g,Λ)

is a Riesz basis for G := G(g,Λ). Then I(G) is a refinement of Λ as in (9).

Proof The Balian-Low theorem [10, Theorem 2.3] and the Amalgam Balian-Low theorem
[2, Theorem 3.2], show that G �= L2(R). Therefore, Lemma 4 implies I(G) �= R

2. The rest
follows from Lemma 7 and Theorem 8. �	

4 Time-frequency shift invariance: duality

Let us consider a Gabor Riesz sequence (g,Λ)with g ∈ W(C, 
2) as in the previous section,
and assume that G := G(g,Λ) � L2(R), but that there exists an additional time-frequency
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shift, meaning I(G) �= Λ. In view of Theorem 1 it is our goal to show that this is impossible,
at least if g ∈ S0. To make the situation more accessible, we first reduce to the case where
Λ = αZ × βZ is separable, and where the additional time-frequency shift is of the form
( α

ν
, 0)� for some ν ∈ N≥2, meaning that Tα/ν g ∈ G. After that, we provide a characterization

of this simplified condition in terms of the adjoint Gabor system. It is this characterization
that we will use to prove our main result, Theorem 1, in the next section.

Lemma 10 Let g ∈ W(C, 
2)\{0} and let Λ ⊂ R
2 be a lattice such that (g,Λ) is a frame for

G := G(g,Λ). If G �= L2(R) and I(G) �= Λ, there exist a matrix B ∈ R
2×2 with det B = 1

and α, β > 0 such that ΛB = αZ × βZ and ( α
ν
, 0)� ∈ I(GB) for some ν ∈ N, ν ≥ 2 (i.e.,

Tα
ν

gB ∈ GB).

Proof Theorem 8 and Lemma 4 show Λ = [λ1, λ2] Z
2 and I(G)=[ λ1

m , λ2
n ] Z

2 for suitable
vectors λ1, λ2 ∈ R

2 and m, n ∈ N\{0}. We may safely assume that m �= 1. Indeed,
since I(G) �= Λ, we have (m, n) �= (1, 1). If m = 1, then with J = [

0 1−1 0

]
also

Λ = [λ1, λ2]JZ
2 = [−λ2, λ1]Z2 and I(G) = [−λ2

n , λ1
m ]Z2.

Now, by Lemma 2 there exists a matrix B ∈ R
2×2 with det B = 1 such that B[λ1, λ2] =

diag(α, β), where α, β ∈ R\{0}. Hence, ΛB = BΛ = |α|Z × |β|Z and

I(GB) = BI(G) = B[λ1, λ2] diag( 1
m , 1

n )Z2 = |α|
m Z × |β|

n Z;
see (6). In particular, ( |α|

m , 0)� ∈ I(GB) and m ≥ 2. �	
In what follows, fix g ∈ L2(R), α, β > 0, Λ = αZ × βZ, and ν ∈ N≥2, and assume that

(g,Λ) is a frame for G = G(g,Λ). The adjoint system

F :=
(

g, 1
β

Z × 1
α
Z

)
=

{
T k

β
M 


α
g : k, 
 ∈ Z

}

is then a frame for its closed linear span K by [28, Theorem 2.2 (c)]. Note that K = L2(R)

if and only if (g,Λ) is a Riesz sequence (cf. [28, Theorem 2.2 (e)] or [16, Theorem 7.4.3]).
It is natural to ask what an additional time-frequency shift invariance of the form Tα

ν
g ∈ G

means for the adjoint system F . To answer this question, we set

Fs :=
{

T k
β

M 
ν
α

M s
α

g : k, 
 ∈ Z

}
, s = 0, . . . , ν − 1.

Again by [28, Theorem2.2 (c)],F0 is a frame sequence if and only if the system (g, α
ν
Z × βZ)

is a frame sequence. In this case, each Fs is a frame sequence because M s
α
F0 is, and multi-

plying the vectors of a frame sequence by unimodular constants results in a frame sequence.
For s ∈ {0, . . . , ν − 1}, we set Ls := spanFs = M s

α
L0. Note that

K = L0 + · · · + Lν−1.

Indeed, the inclusion “⊃” is trivial. Conversely, since F is a frame sequence, each f ∈ K
satisfies f = ∑

k,
∈Z ck,
 Tk/β M
/α g with a suitable sequence c = (ck,
)k,
∈Z∈
2(Z2).
Since F is a Bessel sequence, the function

fs :=
∑

k,
∈Z
ck,
ν+s T k

β
M 
ν+s

α
g ∈ Ls

is well-defined for s ∈ {0, . . . , ν − 1}, and f = f0 + · · · + fν−1 ∈ L0 + · · · + Lν−1.
In the sequel, the symbol � denotes the direct (not necessarily orthogonal) sum of sub-

spaces, whereas ⊕ is used to denote an orthogonal sum.

123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.



48 Page 14 of 22 A. Caragea et al.

The next theorem provides several equivalent conditions for the additional time-frequency
invariance Tα

ν
g ∈ G in terms of properties of the adjoint system F . The—for our purposes—

most useful statement from Theorem 11 is that an additional time-frequency shift of the
form Tα

ν
g ∈ G implies that the scaled frame operator (αβ)−1S 1

β
Z× ν

α
Z,γ,g is a projection.

Theorem 11 Let g ∈ L2(R) and α, β > 0, and assume that (g, αZ×βZ) is a frame sequence
with canonical dual window γ ∈ G, where G = G(g, αZ × βZ). Let ν ∈ N≥2, and define
the systems Fs and the spaces K,Ls as above, and let S 1

β
Z× ν

α
Z,γ,g be the operator defined

as in Equation (2).
Then the following are equivalent:

(i) Tα
ν

g ∈ G.

(ii) (αβ)−1S 1
β
Z× ν

α
Z,γ,g M s

α
g = δs,0 · g for s = 0, . . . , ν − 1.

(iii) K = L0 � · · · � Lν−1.
(iv) γ ⊥ Ls for s = 1, . . . , ν − 1, that is,

〈
γ, T k

β
M 


α
g
〉 = 0

for all k ∈ Z and all 
 ∈ Z\νZ.

If one of (i)–(iv) holds, then for each s = 0, . . . , ν − 1 the system Fs is a frame for Ls and
the operator Ps := (αβ)−1M s

α
S 1

β
Z× ν

α
Z,γ,g M− s

α
is the (possibly non-orthogonal) projection

onto Ls with respect to the decomposition L2(R) = (L0 � · · · � Lν−1) ⊕ K⊥.

Remark 12 The statement (ii) is equivalent to having P0g = g and Ps g = 0 for s =
1, . . . , ν − 1.

Example 13 In both of the following two examples we let g = 1[0,1], β = 1, and ν = 2.

(a) Let α = 2 (i.e., Λ = 2Z × Z). Then G consists of those functions in L2(R) with
support in

⋃
k∈Z[2k, 2k + 1]. Hence, g = T1g /∈ G, so that (i) is violated. Moreover,

L0 = L1 = L2(R), resulting in K = L2(R) = L0 + L1, which is not a direct sum.
(b) Let α = 1 (i.e., Λ = Z × Z). In this case, G = L2(R) so that (i) is trivially satisfied.

Furthermore, L0 is the set of functions f ∈ L2(R) whose restrictions to the intervals
[2k, 2k + 1], k ∈ Z, only have non-zero Fourier coefficients with even index. The space
L1 is described similarly with “even” replaced by “odd”. HenceK = L2(R) = L0 ⊕L1.

Proof of Theorem 11 First, note that F is a frame sequence by Ron-Shen duality (see [28,
Theorem 2.2(c)]). We will frequently use the following fact (see [28, Theorem 2.3]):

(αβ)−1γ is the canonical dual window of F =
{

T k
β

M 

α

g : k, 
 ∈ Z

}
; (11)

in particular, γ ∈ spanF = K.
For the rest of the proof we set P := (αβ)−1S 1

β
Z× ν

α
Z,γ,g. It is well known (see for instance

[16, Eq. (5.25)]) that

P T k
β

M 
ν
α

= T k
β

M 
ν
α

P for all k, 
 ∈ Z. (12)

Moreover, Eq. (3) applied to the lattice 1
β

Z × ν
α
Z shows for f ∈ B 1

β
Z× ν

α
Z
that

P f =
∑

m,n∈Z
cm,n · Tmα

ν
Mnβ f with cm,n = 1

ν
〈g, Tmα

ν
Mnβγ 〉. (13)
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Let us denote the orthogonal projection onto the subspace K = spanF by PK. Note that
Equation (11) implies

S 1
β
Z× 1

α
Z,(αβ)−1γ,g|K = idK and S 1

β
Z× 1

α
Z,(αβ)−1γ,g|K⊥ ≡ 0,

where idK denotes the identity operator onK, so that PK = S 1
β
Z× 1

α
Z,(αβ)−1γ,g (see [8, Propo-

sition 5.2.3]). Similarly, the orthogonal projection PG onto G satisfies PG = SαZ×βZ,γ,g .
Next, using Equation (13) and the elementary identity

∑ν−1
s=0 e2π i ms

ν = ν ·1νZ(m), we obtain

ν−1∑

s=0

M s
α

P M− s
α

f =
ν−1∑

s=0

∑

m,n∈Z
cm,n · M s

α
Tmα

ν
Mnβ M− s

α
f

=
∑

m,n∈Z
cm,n

( ν−1∑

s=0

e2π i ms
ν

)

Tmα
ν

Mnβ f

= ν
∑

m,n∈Z
cνm,nTmα Mnβ f

=
∑

m,n∈Z
〈g, Tmα Mnβγ 〉 · Tmα Mnβ f

(Equation (3)) = (αβ)−1S 1
β
Z× 1

α
Z,γ,g f = S 1

β
Z× 1

α
Z,(αβ)−1γ,g f = PK f ,

(14)

for all f ∈ B 1
β
Z× 1

α
Z
and hence for all f ∈ L2(R) by density. Here, we used that if f ∈

B 1
β
Z× 1

α
Z
, then M− s

α
f ∈ B 1

β
Z× 1

α
Z

⊂ B 1
β
Z× ν

α
Z
.Next, for s = 0, . . . , ν−1, we see by another

application of Eq. (13) that

M− s
α

P M s
α

g = 1

ν

∑

m,n∈Z
〈g, Tmα

ν
Mnβγ 〉 · M− s

α
Tmα

ν
Mnβ M s

α
g

= 1

ν

∑

m,n∈Z

ν−1∑

r=0

〈
g, T νm−r

ν
α Mnβγ

〉 · M− s
α

T νm−r
ν

α Mnβ M s
α

g

= 1

ν

ν−1∑

r=0

e2π i sr
ν · T− rα

ν

∑

m,n∈Z

〈
Trα

ν
g, Tmα Mnβγ

〉 · Tmα Mnβ g

= 1

ν

ν−1∑

r=0

e2π i sr
ν · T− rα

ν
PGTrα

ν
g,

(15)

where we used that PG = SαZ×βZ,γ,g . Equation (15) shows that the vectors

v = (
M− s

α
P M s

α
g
)ν−1

s=0 and u = (
T− rα

ν
PGTrα

ν
g
)ν−1

r=0

in
(
L2(R)

)ν satisfy Fνu = √
ν · v, where Fν is the ν-dimensional discrete Fourier matrix

Fν = ν−1/2
(
ωsr

)ν−1
s,r=0 with ω = e2π i/ν .

With this preparation, we now prove the equivalence of (i)–(iv).
(i)⇔(ii): If Tα

ν
g ∈ G, then Lemma 3 shows that Trα

ν
g ∈ G for all r ∈ Z, so that

T− rα
ν

PGTrα
ν

g = g for all r ∈ Z. Since 1
ν

∑ν−1
r=0 e2π i sr

ν = δs,0 for s ∈ {0, . . . , ν − 1}, the
statement (ii) then follows from (15). Conversely, if (ii) holds, then v = (g, 0, . . . , 0)�, which
implies that u =√

ν · F∗
ν v = (g, g, . . . , g)�. In particular, T− α

ν
PGTα

ν
g = g, i.e., Tα

ν
g ∈ G.
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(ii)⇒(iii): Since Pg = g, it is a consequence of (12) that P|L0 = idL0 . Furthermore, for
s ∈ {1, . . . , ν − 1} and k, 
 ∈ Z, Eq. (12) implies

PT k
β

M 
ν
α

M s
α

g = T k
β

M 
ν
α

P M s
α

g = 0,

which shows P|Ls = 0. Using these observations and noting that Lr = Mr/αL0, we see
for r , s ∈ {0, . . . , ν − 1} that Pr |Lr = Mr/α P M−r/α|Lr = idLr and furthermore Pr |Ls =
Mr/α P M−r/α|Ls = 0 for s �= r . Therefore, the sum K = L0 � · · · � Lν−1 is direct, and
Ps |K = Ms/α P M−s/α|K is the projection ontoLs with respect to this decomposition. Finally,
since γ ∈ K and sinceK is invariant under Tk/β M
/α , it follows by definition of the operator
Ps = (αβ)−1M s

α
S 1

β
Z× ν

α
Z,γ,g M− s

α
that Ps |K⊥ = 0. Hence, Ps is the projection onto Ls with

respect to the decomposition L2(R) = (L0 � · · · � Lν−1) ⊕ K⊥.
Finally, we show that Fs is a frame for Ls , where it clearly suffices to show this for s = 0.

Since F0 is a Bessel sequence, [8, Corollary 5.5.2] shows that we only need to prove that the
synthesis operator

D : 
2(Z2) → L2(R), (ck,
)k,
∈Z �→
∑

k,
∈Z
ck,
 T k

β
M 
ν

α
g

has closed range ran D = L0. Directly from the definition of L0 = spanF0, we see ran D ⊂
L0. Conversely, if f ∈ L0, then

f = P f = (αβ)−1S 1
β
Z× ν

α
Z,γ,g f = (αβ)−1Dc ∈ ran D

for the sequence c = (ck,
)k,
∈Z ∈ 
2(Z2) given by ck,
 = 〈 f , Tk/β M
ν/αγ 〉.
(iii)⇒(ii): Since P = (αβ)−1S 1

β
Z× ν

α
Z,γ,g , we see directly from the definition of

S 1
β
Z× ν

α
Z,γ,g that ran P ⊂ L0. Hence, Pg − g ∈ L0. On the other hand, again as a con-

sequence of ran P ⊂ L0 we see that Ms/α P M−s/α g ∈ Ls , so that Equation (14) implies

L0 � P g − g = P g − PK g = −
ν−1∑

s=1

M s
α

P M− s
α

g ∈ L1 + · · · + Lν−1, (16)

and thus Pg = g since the sumL0+· · ·+Lν−1 is direct. Similarly, for any s ∈{1, . . . , ν−1}
we get because of ran P ⊂ L0 that Ms/α P M−s/α g ∈ Ls ; but this implies as in Equation (16)
that

Ls � M s
α

P M− s
α

g = PKg −
∑

r �=s

M r
α

P M− r
α

g

∈ L0 + span{Lr : r �= s} = span{Lr : r �= s}.
Again, sinceL0+· · ·+Lν−1 is a direct sum, this implies P M− s

α
g = 0 for s = 1, . . . , ν − 1.

Since P commutes with M±ν/α (see Equation (12)), we have P M(ν−s)/α g = 0 and therefore
P Ms/α g = 0 for s = 1, . . . , ν − 1.

(i)⇒(iv):Note that (γ, αZ×βZ) is a frame sequence and furthermore thatG = G(γ, αZ×
βZ). Moreover, Lemma 3 shows that Tα

ν
g ∈ G if and only if G is invariant under Tα

ν
, if and

only if Tα
ν
γ ∈ G. Let us consider the setting above with g and γ interchanged: Define

F∗ := {
Tk/β M
/αγ : k, 
 ∈ Z

}
and

F∗
s :=

{
T k

β
M 
ν

α
M s

α
γ : k, 
 ∈ Z

}
, s = 0, . . . , ν − 1.
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Then, by using the implication “(i)⇒(iii)” in this setting,we obtain thatK∗ = L∗
0�· · ·�L∗

ν−1,
where L∗

s := spanF∗
s and K∗ := spanF∗, and that (αβ)−1M s

α
S 1

β
Z× ν

α
Z,g,γ M− s

α
is the

projection onto L∗
s with respect to the decomposition L2(R) = (L∗

0 � · · · �L∗
ν−1) ⊕ (K∗)⊥.

Note that K∗ = K by Equation (11) and we have S 1
β
Z× ν

α
Z,g,γ = (S 1

β
Z× ν

α
Z,γ,g)

∗ from

the definition of cross frame operators in (2). Hence, Ms/α P∗M−s/α is the projection onto
L∗

s with respect to the decomposition L2(R) = (L∗
0 � · · · � L∗

ν−1) ⊕ K⊥. In particular,
using the general formula (ker T )⊥ = ran T ∗ for a bounded operator T : H → H (see [9,
Remarks after Theorem II.2.19]) and the elementary identity (A + B)⊥ = A⊥ ∩ B⊥ for
subspaces A, B ⊂ H, we get

L∗
0 = ran P∗ = (ker P)⊥ = (L1 � · · · � Lν−1

)⊥ ∩ K.

This implies L∗
0 ⊥ Ls for s = 1, . . . , ν − 1, which is equivalent to (iv).

(iv)⇒(ii): For s ∈ {1, . . . , ν − 1}, we have

P M s
α

g = 1

αβ

∑

k,
∈Z

〈
M s

α
g, T k

β
M 
ν

α
γ
〉

T k
β

M 
ν
α

g = 0.

Thanks to Eq. (14), this implies g = PKg = Pg. Overall, we have thus shown P Ms/α g =
δs,0 g for all s ∈ {0, . . . , ν − 1}. �	

Note that with P := (αβ)−1S 1
β
Z× ν

α
Z,γ,g , the condition P f = f for f ∈ L0 means that

(αβ)−1γ is a dual window for the frame sequenceF0=(g, 1
β

Z× ν
α
Z). However, it is possible

that γ /∈ L0 = spanF0.

5 Proof of themain theorem

In this section, we prove our main result, Theorem 1, which we state here once more for the
convenience of the reader.

Theorem 1 If g ∈ S0(R) and Λ ⊂ R
2 is a lattice such that the Gabor system (g,Λ) is a

Riesz basis for its closed linear span G(g,Λ), then the time-frequency shifts Ta Mb that leave
G(g,Λ) invariant satisfy (a, b) ∈ Λ.

A crucial ingredient for the proof of Theorem 1 is the following auxiliary statement which
relies on a deep result concerning the structure of the irrational rotation algebra Aθ (see [11,
26, 27]). We postpone its proof to Appendix A.

Theorem 14 Let H �= {0} be a Hilbert space and let U , V ∈ B(H) be unitary operators on
H with U V = e2π iθ V U for some θ ∈ R\Q.

If a = (ak,
)k,
∈Z ∈ 
1(Z2) is such that the operator Pa := ∑
k,
∈Z ak,
V kU 
 satisfies

P2
a = Pa, then a0,0 ∈ Z + θZ.

Proof of Theorem 1 The claim is true if Λ has rational density; see [4, Theorem 1]. Thus,
assume that Λ has irrational density d(Λ) ∈ R\Q. Write Λ = AZ

2 with an invertible matrix
A ∈ R

2×2.
Due to the Amalgam Balian–Low theorem [2, Theorem 3.2], it is not possible that G :=

G(g,Λ) = L2(R). Hence, G �= L2(R). Suppose towards a contradiction that I(G) � Λ.
According to Lemma 10 there exist B ∈ R

2×2 with det B = 1 and α, β > 0 such that ΛB =
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αZ × βZ and Tα
ν

gB ∈ GB for some ν ∈ N≥2. Set h := gB and Gh := GB = G(h, αZ × βZ).
Then h ∈ S0(R) by [16, Proposition 12.1.3] and Tα

ν
h ∈ Gh . Furthermore, note that since

(g,Λ) is a Riesz sequence, so is (h, αZ × βZ) = (gB ,ΛB) (cf. Sect. 2.3).
Letγ be the canonical dualwindow for (h, αZ×βZ), so that 〈γ, Tmα Mnβh〉= δm,0 δn,0 for

m, n ∈ Z. By Ron-Shen duality (see [16, Theorem 7.4.3]), the adjoint system (h, 1
β

Z × 1
α
Z)

is a frame for L2(R).
Since Tα

ν
h ∈ Gh , Theorem 11 implies that P0 := (αβ)−1S 1

β
Z× ν

α
Z,γ,h is an idempotent

(i.e., P2
0 = P0). We now wish to apply Theorem 14 to derive a contradiction. To this end,

first note that

αβ = (
d(ΛB)

)−1 = | det B A| = | det A| = (
d(Λ)

)−1 ∈ R \ Q.

Next, set U := Mβ and V := Tα
ν
. A direct calculation shows that

U V = e2π iθ V U , where θ := αβ
ν

∈ R\Q.

Note that also γ ∈ S0(R); see [1, Theorem 7]. Hence, we may use Eq. (7) and obtain

P0 = 1

ν

∑

m,n∈Z

〈
h, Tmα

ν
Mnβγ

〉
Tmα

ν
Mnβ =

∑

m,n∈Z

1

ν

〈
h, V mU nγ

〉
V mU n, (17)

with coefficient sequence a = (am,n)m,n∈Z := ( 1
ν
〈h, V mU nγ 〉)m,n∈Z ∈ 
1(Z2). Therefore,

Theorem 14 shows that 1
ν

= a0,0 ∈ Z + θZ, say 1
ν

= m + nθ for some m, n ∈ Z. We must
have n �= 0, since otherwise 1

ν
= m ∈ Z, in contradiction to ν ≥ 2. Thus, θ = 1

nν
− m

n ∈ Q,

which is the desired contradiction, since θ = αβ
ν

is irrational. �	
Remark 15 On a first look, it might appear as if the proof of Theorem 1 would also apply in
case of g ∈ H

1: First, the classical Balian-Low theorem implies that G := G(g,Λ) � L2(R),
so that Lemma 10 allows the reduction to a Gabor Riesz sequence (h,Λ) with h ∈ H

1, a
separable latticeΛ = αZ×βZ, and an additional time-frequency shift of the form Tα/ν h ∈ G.
One can then apply Theorem 11 to see that that L2(R) = L0 � · · · � Lν−1. In the S0-case,
we then employed Janssen’s representation (17) for the projection P0 = (αβ)−1S 1

β
Z× ν

α
Z,γ,h ,

which then led to success in the proof of Theorem 1, thanks to existing results concerning
the structure of the irrational rotation algebra. However, in the case h ∈ H

1 the series in (17)
might not converge in operator norm, so that one does not know whether P0 belongs to the
irrational rotation algebra. Thus, the proof breaks down at this point.
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A Appendix—Proof of Theorem 14

As a foreword, it bears to point out that the intent of this appendix is to give a minimal
and self-contained ‘translation’ of a deep result from the theory of C∗-algebras (namely that
the trace of a projection operator on an irrational rotation algebra has a very specific form,
Theorem 1.2 in [27]) to the standard language of Gabor analysis literature. As such, within
this paper, the result will essentially be treated like a ‘black box’ and we will only show how
it applies to our present problem. For more details, we refer the interested reader to [27] for
a proof of the result or to [11] for more background.

The proof will make use of some parts of the theory of C∗-algebras, which we recall
here for the convenience of the reader, based on [25]. Readers familiar with C∗-algebras will
probably want to skip this part—except possibly Lemma 16.

A C∗-algebra is a (complex) Banach algebra (A, ‖ · ‖), additionally equipped with a map
A → A, x �→ x∗ (called the involution on A), satisfying the following properties:

– (x + y)∗ = x∗ + y∗, (λ x)∗ = λ x∗, and (x y)∗ = y∗ x∗ and (x∗)∗ = x for all x, y ∈ A
and λ ∈ C;

– ‖x∗‖ = ‖x‖ and ‖x∗x‖ = ‖x‖2 for all x ∈ A.

An element p ∈ A is called an idempotent if p2 = p. An idempotent p is called a projection
if additionally p = p∗ holds. A C∗-algebra A is called unital if it contains a (necessarily
unique) element 1 ∈ A satisfying 1 �= 0 and x 1 = 1 x = x for all x ∈ A. In a unital
C∗-algebra A, an element x ∈ A is called unitary if x∗x = 1 = xx∗. If A is a unital C∗-
algebra and a ∈ A, then σ(a∗a) ⊂ [0,∞); see [25, Theorem 2.2.4]. Here, σ(b) = {λ ∈
C : b − λ1 not invertible in A}.
Lemma 16 Any idempotent e in a unital C∗-algebra A is similar to a projection p ∈ A. That
is, there exist a projection p ∈ A and an invertible element a ∈ A such that e = a−1 pa.

Proof We set b := e∗ − e and z := 1+ b∗b. Note that z is invertible since σ(b∗b) ⊂ [0,∞).
We have

ez = e + (e − ee∗)(e∗ − e) = ee∗e = e + (e − e∗)(e∗e − e) = ze.
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Consequently, ez−1 = z−1e and, as z = z∗, also e∗z−1 = z−1e∗. Now, define the element
p := ez−1e∗. We have p∗ = p. Furthermore, since we just saw that z−1 commutes with e
and e∗ and that ee∗e = ze, we also see that p2 = z−2(ee∗e)e∗ = z−1ee∗ = p. Hence, p is
a projection. We further observe that ep = p and pe = ez−1e∗e = z−1ee∗e = z−1ze = e.
Set a := 1 − p + e. Then we see because of

(1 ∓ p ± e)(1 ± p ∓ e) = 1 ± p ∓ e ∓ p − p + e ± e + p − e = 1

that a is invertible with a−1 = 1 + p − e. Hence, from ae = e − pe + e = e we obtain

aea−1 = e(1 + p − e) = e + ep − e = ep = p,

which proves the lemma. �	
A closed subspace B of a C∗-algebra A is called a C∗-subalgebra of A if it is closed

under both multiplication and involution. It is clear that B is then itself a C∗-algebra. As
usual, given a subset S ⊂ A, there is a smallest (with respect to inclusion) C∗-subalgebra of
A containing S. We call it the C∗-algebra generated by S, and denote it by C∗(S).

A map ϕ : A → B between two C∗-algebras A and B is called a ∗-homomorphism if
it is linear and satisfies ϕ(x y) = ϕ(x) ϕ(y) as well as ϕ(x∗) = [ϕ(x)]∗ for all x, y ∈ A.
A bijective ∗-homomorphism is called a ∗-isomorphism. Any ∗-homomorphism ϕ : A → B
necessarily satisfies ‖ϕ(x)‖B ≤ ‖x‖A for all x ∈ A, and is hence continuous; see [25,
Theorem 2.1.7].

Proof of Theorem 14 We will make use of the so-called irrational rotation algebra Aθ with
θ ∈ R\Q, as introduced for instance in [11, Chapter VI]. The actual definition of this algebra
is not relevant for us; we will only need to know that it satisfies the following properties:

– Aθ is a unital C∗-algebra;
– The algebraAθ is universal among all unital C∗-algebras generated by unitary elements

U , V satisfying U V = e2π iθ V U . Thus, definingA := C∗(U , V ) as a C∗-subalgebra of
B(H) with U , V as in the statement of Theorem 14, there is a ∗-isomorphism ϕ : A →
Aθ ; this follows from [11, Theorem VI.1.4].

– As shown in [11, Corollary VI.1.2 and Proposition VI.1.3], there is a unique (unital )
trace τ : Aθ → C. By definition of a trace, this means in particular that τ is linear and
continuous, satisfying τ(1) = 1 and τ(xy) = τ(yx) for all x, y ∈ Aθ .

– For any projection p ∈ Aθ , we have τ(p) ∈ Z + θZ; see [27, Theorem 1.2]. We remark
that this result was originally proven in [26].

Let us define τ � := τ ◦ ϕ, and note that τ � : A → C is continuous. It is easy to see
that τ � is linear with τ �(idH) = 1 and τ �(AB) = τ �(B A) for all A, B ∈ A; this is called
the cyclicity of the trace. Next, from the relation U V = e2π iθ V U , we immediately get for
k, 
 ∈ Z that

V kU 
 = e−2π i
θ V k−1U 
V = e−2π ikθU V kU 
−1.

Thus, noting thatV kU 
 ∈ A,weobtain τ �(V kU 
) = e−2π i
θ τ �(V kU 
) = e−2π ikθ τ �(V kU 
)

by cyclicity. As θ is irrational, this implies τ �(V kU 
) = δ
,0δk,0. Next, since we have
‖V kU 
‖ = 1 for all k, 
 ∈ Z and since a ∈ 
1(Z2), we see that Pa = ∑

k,
∈Z ak,
V kU 
 ∈ A,
with unconditional convergence of the defining series. Hence,

τ �(Pa) =
∑

k,
∈Z
ak,
 · τ �(V kU 
) = a0,0.
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Since P2
a = Pa and sinceϕ : A → Aθ is a ∗-homomorphism,we see that e := ϕ(Pa) ∈ Aθ is

an idempotent. By Lemma 16 there exist b, p ∈ Aθ such that b is invertible, p is a projection,
and e = b−1 pb. Thanks to the cyclicity of the trace, we thus see that

a0,0 = τ �(Pa) = τ(e) = τ(b−1 pb) = τ(p) ∈ Z + θZ,

as claimed. �	
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