Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren


Schur-type Banach modules of integral kernels acting on mixed-norm Lebesgue spaces


Verfügbarkeit überprüfen

Holighaus, Nicki ; Voigtlaender, Felix:
Schur-type Banach modules of integral kernels acting on mixed-norm Lebesgue spaces.
In: Journal of functional analysis. 281 (2021) 9: 109197.
ISSN 0022-1236 ; 1096-0783


Open Access
Volltext Link zum Volltext (externe URL):


Schur's test for integral operators states that if a kernel K:X×Y→C satisfies ∫Y|K(x,y)|dν(y)≤C and ∫X|K(x,y)|dμ(x)≤C, then the associated integral operator is bounded from Lp(ν) into Lp(μ), simultaneously for all p∈[1,∞]. We derive a variant of this result which ensures that the integral operator acts boundedly on the (weighted) mixed-norm Lebesgue spaces Lwp,q, simultaneously for all p,q∈[1,∞]. For non-negative integral kernels our criterion is sharp; that is, the integral operator satisfies our criterion if and only if it acts boundedly on all of the mixed-norm Lebesgue spaces. Motivated by this new form of Schur's test, we introduce solid Banach modules Bm(X,Y) of integral kernels with the property that all kernels in Bm(X,Y) map the mixed-norm Lebesgue spaces Lwp,q(ν) boundedly into Lvp,q(μ), for arbitrary p,q∈[1,∞], provided that the weights v,w are m-moderate. Conversely, we show that if A and B are non-trivial solid Banach spaces for which all kernels K∈Bm(X,Y) define bounded maps from A into B, then A and B are related to mixed-norm Lebesgue-spaces, in the sense that (L1∩L∞∩L1,∞∩L∞,1)v↪B and A↪(L1+L∞+L1,∞+L∞,1)1/w for certain weights v,w depending on the weight m used in the definition of Bm. The kernel algebra Bm(X,X) is particularly suited for applications in (generalized) coorbit theory. Usually, a host of technical conditions need to be verified to guarantee that the coorbit space CoΨ(A) associated to a continuous frame Ψ and a solid Banach space A are well-defined and that the discretization machinery of coorbit theory is applicable. As a simplification, we show that it is enough to check that certain integral kernels associated to the frame Ψ belong to Bm(X,X); this ensures that the spaces CoΨ(Lκp,q) are well-defined for all p,q∈[1,∞] and all weights κ compatible with m. Further, if some of these integral kernels have sufficiently small norm, then the discretization theory is also applicable.

Weitere Angaben

Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen/Informatik
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Reliable Machine Learning
Weitere URLs:
DOI / URN / ID:10.1016/j.jfa.2021.109197
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
Eingestellt am: 15. Nov 2021 13:18
Letzte Änderung: 11. Mai 2022 15:52
URL zu dieser Anzeige:
AnalyticsGoogle Scholar