Titelangaben
Caragea, Andrei ; Lee, Dae Gwan ; Maly, Johannes ; Pfander, Götz E.:
Quantitative approximation results for complex-valued neural networks.
Eichstätt : arXiv, 2021. - 19 S.
Volltext
Link zum Volltext (externe URL): https://arxiv.org/abs/2102.13092 |
Kurzfassung/Abstract
Until recently, applications of neural networks in machine learning have almost exclusively relied on real-valued networks. It was recently observed, however, that complex-valued neural networks (CVNNs) exhibit superior performance in applications in which the input is naturally complex-valued, such as MRI fingerprinting. While the mathematical theory of real-valued networks has, by now, reached some level of maturity, this is far from true for complex-valued networks. In this paper, we analyze the expressivity of complex-valued networks by providing explicit quantitative error bounds for approximating Cn functions on compact subsets of Cd by complex-valued neural networks that employ the modReLU activation function, given by σ(z)=ReLU(|z|−1)sgn(z), which is one of the most popular complex activation functions used in practice. We show that the derived approximation rates are optimal (up to log factors) in the class of modReLU networks with weights of moderate growth.
Weitere Angaben
Publikationsform: | Preprint, Working paper, Diskussionspapier |
---|---|
Zusätzliche Informationen: | To appear in: SIAM Journal on Mathematics of Data Science |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | arxiv:2102.13092 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 26897 |
Letzte Änderung: 04. Okt 2024 14:15
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26897/