Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Identification of channels with single and multiple inputs and outputs under linear constraints

Titelangaben

Verfügbarkeit überprüfen

Lee, Dae Gwan ; Pfander, Götz E. ; Pohl, Volker ; Zhou, Weiqi:
Identification of channels with single and multiple inputs and outputs under linear constraints.
In: Linear algebra and its applications. 581 (2019). - S. 435-470.
ISSN 0024-3795

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.laa.2019.07.025

Kurzfassung/Abstract

The channel identification problem for multiple-input multiple-output (MIMO) channels under linear constraints can be formulated as solving a linear system which involves finite-dimensional Gabor matrices and a pre-determined unstructured matrix that represents the linear constraints. While matrices of the latter type are fixed a priori by the constraints, Gabor matrices depend on the choice of their generating windows which is often chosen by the user. This is important since even if the matrix associated with the linear constraints is ill-conditioned, the full system may be solvable if the windows are designed appropriately.

We prove that linear constraints consisting of a single equation always remove a single degree of freedom in the channel identification problem, in the sense that preknowledge of such constraints allows identification of MIMO channels with support size one greater than the fundamental limit. However, we give an explicit example showing that this statement does not generalize to the case of multiple constraints. In the single-input single-output (SISO) case, we provide some sufficient conditions on the linear side constraints under which the corresponding SISO channels are identifiable.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1016/j.laa.2019.07.025
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:American Elsevier Publ.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:23442
Eingestellt am: 16. Okt 2019 14:11
Letzte Änderung: 04. Okt 2024 14:11
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/23442/
AnalyticsGoogle Scholar