Titelangaben
Caragea, Andrei ; Lee, Dae Gwan ; Philipp, Friedrich ; Voigtlaender, Felix:
A quantitative subspace Balian-Low theorem.
2019. - 38 S.
Volltext
Link zum Volltext (externe URL): https://doi.org/10.48550/arXiv.1904.12250 |
Kurzfassung/Abstract
Let G⊂L2(R) be the subspace spanned by a Gabor Riesz sequence (g,Λ) with g∈L2(R) and a lattice Λ⊂R2 of rational density. It was shown recently that if g is well-localized both in time and frequency, then G cannot contain any time-frequency shift π(z)g of g with z∉Λ. In this paper, we improve the result to the quantitative statement that the L2-distance of π(z)g to the space G is equivalent to the Euclidean distance of z to the lattice Λ, in the sense that the ratio between those two distances is uniformly bounded above and below by positive constants. On the way, we prove several results of independent interest, one of them being closely related to the so-called weak Balian-Low theorem for subspaces.
Weitere Angaben
Publikationsform: | Preprint, Working paper, Diskussionspapier |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.48550/arXiv.1904.12250 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 23425 |
Letzte Änderung: 02. Jun 2023 11:01
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/23425/