Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Sampling and reconstruction of operators

Titelangaben

Verfügbarkeit überprüfen

Pfander, Götz E. ; Walnut, David:
Sampling and reconstruction of operators.
In: IEEE transactions on information theory. 62 (Januar 2016) 1. - S. 435-458.
ISSN 0018-9448 ; 1557-9654

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1109/TIT.2015.2501646

Kurzfassung/Abstract

We study the recovery of operators with a bandlimited Kohn-Nirenberg symbol from the action of such operators on a weighted impulse train, a procedure we refer to as sampling of operators. Kailath, Bello, and later Kozek and the authors have shown that the sampling of operators is possible if the symbol of the operator is bandlimited to a set with area less than one. In this paper, we develop the theory of the sampling of operators in analogy with the classical theory of sampling of bandlimited functions. We define the notions of sampling set and sampling rate for operators and give necessary and sufficient conditions on the sampling rate that depend on the size and geometry of the bandlimiting set. We develop explicit reconstruction formulas for operator sampling that generalize reconstruction formulas for bandlimited functions. We give necessary and sufficient conditions on the bandlimiting set under which sampling of operators is possible by their action on a given periodically weighted delta train. We show that under mild geometric conditions on the bandlimiting set, classes of operators are bandlimited to an unknown set of area less than one-half permit sampling and reconstruction. We generalize two results of the Heckel and Bölcskei concerning sampling of operators with area not greater than one-half and less than one, respectively, by finding a larger class of operators to which they apply. Operators with bandlimited symbols have been used to model doubly dispersive communication channels with slowly time-varying impulse response. The results in this paper are rooted in work by Bello and Kailath in the 1960s.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Bandlimined Kohn-Nirenberg symbols; spreading function; operator Paley-Wiener space; channel measurement; channel identification; operator identification; sampling of operators; Gabor analysis; symplectic matrices
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
Weitere URLs:
DOI / URN / ID:10.1109/TIT.2015.2501646
Peer-Review-Journal:Ja
Verlag:IEEE
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:20490
Eingestellt am: 28. Aug 2017 14:07
Letzte Änderung: 04. Okt 2024 13:27
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/20490/
AnalyticsGoogle Scholar