Titelangaben
Krahmer, Felix ; Pfander, Götz E.:
Local Sampling and Approximation of Operators with Bandlimited Kohn--Nirenberg Symbols.
In: Constructive approximation. 39 (Juni 2014) 3.
- S. 541-572.
ISSN 0176-4276 ; 1432-0940
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1007/s00365-014-9228-4 |
Kurzfassung/Abstract
Recent sampling theorems allow for the recovery of operators with bandlimited Kohn--Nirenberg symbols from their response to a single discretely supported identifier signal. The available results are inherently nonlocal. For example, we show that in order to recover a bandlimited operator precisely, the identifier cannot decay in time or in frequency. Moreover, a concept of local and discrete representation is missing from the theory. In this paper, we develop tools that address these shortcomings. We show that to obtain a local approximation of an operator, it is sufficient to test the operator on a truncated and mollified delta train, that is, on a compactly supported Schwarz class function. To compute the operator numerically, discrete measurements can be obtained from the response function which is localized in the sense that a local selection of the values yields a local approximation of the operator. Central to our analysis is the conceptualization of the meaning of localization for operators with bandlimited Kohn--Nirenberg symbols.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Springer |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 20375 |
Letzte Änderung: 04. Okt 2024 13:20
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/20375/