Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Monotonicity properties of multivariate distribution and survival functions — With an application to Lévy-frailty copulas

Titelangaben

Verfügbarkeit überprüfen

Ressel, Paul:
Monotonicity properties of multivariate distribution and survival functions — With an application to Lévy-frailty copulas.
In: Journal of multivariate analysis. 102 (2011) 3. - S. 393-404.
ISSN 0047-259x ; 1095-7243

Volltext

Volltext Link zum Volltext (externe URL):
http://dx.doi.org/10.1016/j.jmva.2010.10.001

Kurzfassung/Abstract

The monotonicity properties of multivariate distribution functions are definitely more complicated than in the univariate case. We show that they fit perfectly well into the general theory of completely monotone and alternating functions on abelian semigroups. This allows us to prove a correspondence theorem which generalizes the classical version in two respects: the function in question may be defined on rather arbitrary product sets in Rn, and it need not be grounded, i.e. disappear at the lower-left boundary. In 2009 a greatly interesting class of copulas was discovered by Mai and Scherer (cf. Mai and Scherer (2009) [4]), connecting in a very surprising way complete monotonicity with respect to the maximum operation on Rn+ and with respect to ordinary addition on N0. Based on the preceding results, we give another proof of this result.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Multivariate distribution function; Multivariate survival function; Completely monotone; Completely alternating; n-increasing; Fully n-increasing; n-max-increasing; Correspondence theorem; Lévy-frailty copula
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Stochastik (bis 2016)
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:9985
Eingestellt am: 18. Jul 2012 07:41
Letzte Änderung: 10. Jun 2016 11:10
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/9985/
AnalyticsGoogle Scholar