Titelangaben
Ressel, Paul:
Monotonicity properties of multivariate distribution and survival
functions — With an application to Lévy-frailty copulas.
In: Journal of multivariate analysis. 102 (2011) 3.
- S. 393-404.
ISSN 0047-259x ; 1095-7243
Volltext
Link zum Volltext (externe URL): http://dx.doi.org/10.1016/j.jmva.2010.10.001 |
Kurzfassung/Abstract
The monotonicity properties of multivariate distribution functions are definitely more complicated than in the univariate case. We show that they fit perfectly well into the general theory of completely monotone and alternating functions on abelian semigroups. This allows us to prove a correspondence theorem which generalizes the classical version in two respects: the function in question may be defined on rather arbitrary product sets in Rn, and it need not be grounded, i.e. disappear at the lower-left boundary. In 2009 a greatly interesting class of copulas was discovered by Mai and Scherer (cf. Mai and Scherer (2009) [4]), connecting in a very surprising way complete monotonicity with respect to the maximum operation on Rn+ and with respect to ordinary addition on N0. Based on the preceding results, we give another proof of this result.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Multivariate distribution function; Multivariate survival function; Completely monotone; Completely alternating; n-increasing; Fully n-increasing; n-max-increasing; Correspondence theorem; Lévy-frailty copula |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Stochastik (bis 2016) |
Peer-Review-Journal: | Ja |
Verlag: | Elsevier |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 9985 |
Letzte Änderung: 10. Jun 2016 11:10
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/9985/