Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Channel modeling and Levenshtein distances with context-dependent weights

Titelangaben

Verfügbarkeit überprüfen

Wirsching, Günther:
Channel modeling and Levenshtein distances with context-dependent weights.
Eichstätt, 2010. - 22 S.

Volltext

[img]
Vorschau
Text (PDF)
Veröffentlichungsstatus: Aktualisierte Version
Verfügbar unter folgender Lizenz: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Creative Commons: Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0) .

Download (300kB) | Vorschau

Kurzfassung/Abstract

A connection between channel modeling in mathematical information theory and a certain extension of Levenshtein distances is established. The model assigns positive real weights to elementary editing operations substitution, deletion, insertion, and ending, which may depend on arbitrary finite contexts. Given a context structure, an algorithm for estimating context-dependent probabilities of elementary editing operations from a given finite training corpus is designed. This algorithm is similar to the EM algorithm, the maximization step being replaced by an estimation step to determine probability structures from weighted counts. Some conditions on the context structure are formulated which make this estimation problem algorithmically accessible by reducing it to the general problem of estimating a probability vector on a finite state space from counts.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Schlagwörter:Shannon information theory, channel modeling, Levenshtein distance, EM algorithm, point estimates.
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Titel an der KU entstanden:Ja
KU.edoc-ID:5598
Eingestellt am: 08. Dez 2010 16:00
Letzte Änderung: 10. Aug 2017 13:40
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/5598/
AnalyticsGoogle Scholar