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Abstract

A connection between channel modeling in mathematical informa-
tion theory and a certain extension of Levenshtein distances is estab-
lished. The model assigns positive real weights to elementary editing
operations substitution, deletion, insertion, and ending, which may de-
pend on arbitrary finite contexts. Given a context structure, an al-
gorithm for estimating context-dependent probabilities of elementary
editing operations from a given finite training corpus is designed. This
algorithm is similar to the EM algorithm, the maximization step be-
ing replaced by an estimation step to determine probability structures
from weighted counts. Some conditions on the context structure are
formulated which make this estimation problem algorithmically acces-
sible by reducing it to the general problem of estimating a probability
vector on a finite state space from counts.

1 Introduction

In mathematical information theory [4], a channel is defined as a triple
(A, νx,B) consisting of an input alphabet A, an output alphabet B, and a
family of probability measures (νx). For each input sequence

x = (. . . , x−1, x0, x1, x2, . . .) ∈ AZ,

taken to be infinite in both directions, νx is a probability measure on the
space B Z of output sequences, where, for each measurable set Z ⊂ B Z,
νx(Z) is the probability that, given the input sequence x, the output is an
element of Z. Channel modeling refers to the construction of a stochastic
process imitating the channel in the sense that the probability measures νx
can be computed from the process parameters. In his seminal paper [11],
Shannon started information theory by proving his fundamental theorems
for channels which are modeled by Markov matrices. The aim of this paper
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is channel modeling from data (for a similar approach see [12] and [9]): Given
a training corpus of input-output pairs, how can one extract good estimates
for the probability measures νx? Clearly, the family (νx) of probability
measures is infinite, and usually the training corpus is a finite set of input-
output pairs, where each pair consists of a finite A-word as input and a finite
B-word as output. There are two major problems attacked in this paper:
the deletion-insertion problem and the finiteness problem.

The finiteness problem will be captured in the notion context structure
to be introduced in section three. The approach to contexts adopted here
is rather abstract: a context structure, as defined here, consists of a fixed
set of arbitrary algorithms, each of which being designed for classifying a
given context situation, taken from a potentially infinite set of possibilities,
according to a prescribed set of classes.

To state the deletion-insertion problem, observe that a given input-
output pair may be structured in such a way that, in some cases, it appears
‘very likely’ that the transmission channel just ‘deleted’ a symbol (∈ A) from
the input, or, in other cases, just ‘inserted’ a symbol (∈ B) to the output.
To come to a mathematical description of this situation, an editing trellis is
associated to each input-output pair (sin, sout); if both input and output are
finite strings, then the trellis is finite. The trellis contains arrows represent-
ing the elementary editing operations substitution, deletion, and insertion;
a similar trellis is sometimes used to visualize the original Levenshtein al-
gorithm [7] for the computation of distances between strings. By definition,
the trellis describes all editing sequences built from the considered editing
operations and leading from sin to sout. It turns out that, if an additional
elementary editing operation called ending is introduced, then the editing
trellis described here is an appropriate tool to estimate context-dependent
weights from given transmission observations.

Note that an influence of future contexts is not excluded. This is moti-
vated by one special type of channel I have in mind: the channel ‘spoken lan-
guage’, where input and output can be considered as sequences of phonemes.
Modeling this channel can be applied to speech recognition, where weighted
Levenshtein distances without channel modeling background already are in
use [10]. Another possible application could be the tracking of sound changes
in natural language over centuries, which, according to the neogrammarian
hypothesis, should be determined by phonological environment, see, for in-
stance, Malmkjær [8]. In both application, it is intuitively clear that one
should not neglect a priori possible influence of succeeding phonemes, i. e.,
in the information theoretic notions adopted here, of future contexts. Thus,
the channel ‘spoken language’ is anticipating in the sense of information
theory.

The content of this paper is organized as follows. After an introductory
section on the use of the editing trellis, section three is devoted to an explicit
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statement and proof of the connection between context-dependent probabil-
ities of elementary editing operations and the probabilities (νx) defining the
mathematical model of a transmission channel. An algorithm for estimating
probabilities of elementary editing operations is presented and explained in
detail beginning in section four. Section five addresses the estimation of
context-dependent probabilities from counts. The formulation of conditions
under which this estimation problem reduces to the general problem of esti-
mating a probability vector on a finite state space from counts, leads to the
concept of normal context structures.

2 The trellis

Assume that two alphabets are given, a finite non-empty input alphabet
A for the symbols coming in the channel, and a finite non-empty result
alphabet B containing the possible symbols resulting after transmission. In
addition, assume existence of two additional symbols which are supposed to
be not contained in A ∪ B:

〈 meaning start message,

〉 meaning end of message.

Here are some examples to see what can happen when an input string 〈abc〉
is transformed by the channel into an output string.

Input 〈 a b c 〉 〈 a b c 〉 〈 a b c 〉
Output 〈 a x c 〉 〈 a c 〉 〈 a b b c 〉 (1)

In the first case, one would say that the symbol b is misunderstood to x.
The second case is the deletion of the second letter b, and the third case is
the insertion of a letter b between a and b, or between b and c.

To describe the situation more precisely, imagine a pointer starting at
〈 and jumping from symbol to symbol of the input string. At 〈, start an
output string with 〈, and move the pointer to the next input symbol. In
practise, it may be difficult to recognize beginning and/or end of a message,
but this problem is not considered in this paper.

At each symbol ∈ A, we have three possible editing operations:

Substitution: choose a symbol x ∈ B and write it to the output
string; move the pointer to the next input symbol.

Deletion: move the pointer to the next input symbol.

Insertion: choose a symbol x ∈ B and write it to the output
string; don’t move the pointer.

In this setting, a correct recognition (or copying) of an input symbol is a
special substitution and might be called a self-substitution. At the string
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termination symbol 〉, no substitution nor deletion makes sense. But it is
possible to insert additional symbols before terminating the output string.

Our next aim is to capture all reasonable editing sequences leading from
a given input string of length `0 ∈ N0, the coming symbols,

sin = 〈c1 . . . c`0〉 ∈ {〈} × A∗ × {〉},

to a given output string of length `1 ∈ N0, the received symbols,

sout = 〈r1 . . . r`1〉 ∈ {〈} × B∗ × {〉};

here the usual Kleene star operation is employed to denote, e.g., the set
A∗ of all finite A-strings including the empty string. The requested editing
sequences will be found in an editing trellis consisting of panels and arrows
which is visualized in a grid with (`0 + 1) rows and (`1 + 1) columns:

..................
..................
..................
..................
..................
..................
..........................
............................

............................
............................

............................
............................

...................

sout

sin 0

〈
1

r1

. . .

. . .

`1
r`1

0c1

`0 − 1c`0

...
...

`0〉

The horizontal labeling

h(i) :=

{
〈 for i = 0,

ri for i ∈ {1, . . . , `1}.

means ‘the last received symbol’, whereas the vertical labeling

v(j) :=

{
cj+1 for j ∈ {0, . . . , `0 − 1},
〉 for j = `0,

means ‘the next coming symbol’. Thus, a panel with coordinates (i, j) gets
the labeling

pij := (h(i), v(j)) = (ri, cj+1)

describing a situation where the last received symbol is h(i) = ri and the
next coming symbol is v(j) = cj+1.
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We can find the above mentioned editing operations in the trellis: each
editing operation corresponds to an arrow from a panel (i, j) to one of its
neighbours.

Substitution : (i, j)→ (i+ 1, j + 1) (diagonal arrow)

Deletion : (i, j)→ (i, j + 1) (vertical arrow)

Insertion : (i, i)→ (i+ 1, j) (horizontal arrow)

 (2)

The following figure shows possible paths of editing operations leading to
the input-output pairs given in (1).
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In each trellis, the editing path starts at the panel (0, 0) with labeling

p00 = (〈, c1)

and ends at the panel (`1, `0) with labeling

p`1`0 = (r`1 , 〉).

An example for the complete trellis for sin = 〈abc〉 and sout = 〈vwxy〉 with
all possible arrows looks as follows:
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〈 v w x y
(3)

Next we derive a formula for the number, in a general trellis with (`1+1) and
(`0 + 1) columns, of possible paths from (0, 0) to (`1, `0). One possible path
consists of first deleting all symbols from the input string, and subsequently
inserting the symbols forming the output string. In this path, we need `0
deletions and `1 insertions, making a total of `0 +`1 editing operations. As a
substitution (including copying) can by thought of as a deletion followed by
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an insertion, any valid editing path from input to output string must obey
the formulae

ns + nd = `0, ns + ni = `1, (4)

where ns denotes the number of substitutions, nd the number of deletions,
and ni the number of insertions. Given a multi-set M consisting of ns
symbols s, nd symbols d, and ni symbols i such that formula (4) is fulfilled,
then there is a canonical one-one-correspondance between the set of non-
isomorphic orderings of M and the set of possible editing paths in the trellis.
Hence the number of editing paths from sin to sout is

N(sin, sout) =

min{`0,`1}∑
ns=0

(
`0 + `1

2ns

)(
`0 + `1 − 2ns
`0 − ns

)

=

min{`0,`1}∑
ns=0

(`0 + `1)!

(2ns)! (`0 − ns)! (`1 − ns)!
. (5)

Note that it is never algorithmically necessary to examine all these paths
separately. Indeed, as we shall see in section 4, a trellis version of the
well-known Baum-Welch algorithm extracts essential information about all
possible paths in O(`0`1) time.

3 Context structures and probabilities

Suppose that we have an input string sin = 〈c1 · · · c`0〉 and a corresponding
output string sout = 〈r1 · · · r`1〉. Then consider the trellis T built from sin

and sout and associate to each panel (i, j) in T a context

CT (i, j) := (RT (i), LT (j), FT (j)) (6)

consisting of the following three parts:

RT (i) ∈ {〈} × B∗ : 〈r1 . . . ri the received context,

LT (j) ∈ {〈} × A∗ : 〈c1 . . . cj the left context,

FT (j) ∈ A∗ × {〉} : cj+1 . . . c`0〉 the future context.

 (7)

Moreover, associate to an arrow of type

t ∈ {substitution, deletion, insertion}

starting from (i, j) and ending at (i′, j′) a triple

AT (i, j, t) := (CT (i, j), t, r) (8)
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where the components have the following meaning:

CT (i, j) : the context defined above,

t ∈ {s, d, i, e} : the type of the arrow,

r ∈ B ∪ {ε, 〉} : the received symbol.

 (9)

Here we’ve added two more possible ‘received symbols’: the ‘end of message’
symbol 〉 , and ε, which stands for an empty string. Moreover, in (9) we
added a fourth possible type e meaning that we received the ‘end of message’
symbol 〉 . Such an arrow doesn’t occur in a trellis like (3), as such a trellis
ends with the last received symbol—which is natural when the trellis arises
from a given input-output pair. The fourth type e (for ending) will be
necessary for the probabilistic considerations following in the sequel.

If we imagine the transmission process as a process to find an editing
path in a trellis, we would have, at each panel of the trellis, the decision
which one of the possible arrows to follow next. Modeling this decision by
assigning a probability pt(r, c) ∈ [0, 1] to each arrow, we have to require
that, for a fixed context c = CT (i, j),

pd(ε, c) + pe( 〉 , c) +
∑
r∈B

(
ps(r, c) + pi(r, c)

)
= 1. (10)

As there are infinitely many possible contexts CT (i, j) and we have only
finitely many input-output pairs for training, it is necessary to project a
given context onto an appropriate candidate from a finite set of context
prototypes. To fix ideas, use (7) and denote by

C(A,B) := ({〈} × B∗)× ({〈} × A∗)× (A∗ × {〉})

the set of all imaginable contexts. As it doesn’t make sense to substitute or
delete the ‘end of message’ character, we introduce, in addition, the notation

C◦(A,B) := ({〈} × B∗)× ({〈} × A∗)×
(
A+ × {〉}

)
⊂ C(A,B)

for the subset of contexts where the future context comprises more than just
the ‘end of message’ character. The elements of C◦(A,B) are called inner
contexts, whereas the elements of C(A,B)\C◦(A,B) are called end contexts.

In many cases it makes sense to consider different contexts for substitu-
tion, deletions, insertions, or endings, so we have to use four context projec-
tions, which are assumed to be surjective:

C◦(A,B)⋂
C(A,B)

Cs(A,B)

Cd(A,B)

Ci(A,B)

Ce(A,B)

..................................
..................................

..................................
..................................

..................................
..................................

..............................................

...................................................................................................................................................................................................... .................

...................................................................................................................................................................................................... .................

..................................................................................................................................................................................................................................... .................

πs

πd

πi

πe

(11)
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By definition, a context structure Π consists of four algorithms to evaluate
these maps πs, πd, πi, and πe. We will call a context structure finite, if all
the ranges Cs(A,B), Cd(A,B), Ci(A,B), and Ce(A,B), are finite.

Example 1 To give a simple example of a finite context structure, define

Cs(A,B) := Cd(A,B) := A,
Ce(A,B) := A ∪ { 〉 },
Ci(A,B) := {ε},

πs(CT (i, j)) := πd(CT (i, j)) := cj+1,

πe(CT (i, j)) := cj+1,

πi(CT (i, j)) := ε.


(12)

Note that there is no substitution arrow or deletion arrow in a situation with
j = `0, whence cj+1 ∈ A is always well-defined. The structure defined in
(12) describes one of the simplest reasonable ones, meaning: for substitution
or deletion, consider just the symbol to be consumed; for insertion, don’t
consider any context; to get the probability for ending, consider just the
next coming symbol. Note that, if CT (i, j) is an end context, then the next
coming symbol may be the ‘end of message’ symbol 〉 . �

In practise, it is recomendable to use more symbols from CT (i, j) as far
as training data and available storing space allow. The projections πs, πd,
πi, πe, respectively, should map a given context to the longest matching one
in Cs(A,B), Cd(A,B), Ci(A,B), Ce(A,B), respectively, and there has to be
fixed a strategy for cases when there is more than one longest match. A good
algorithm dealing with context-dependent matching has been evaluated by
Kölbl [5].

Let us see how to state formula (10) when the context c is evaluated
according to a context structure with four projections. Then the assignment
of (estimates for) probabilities needs four functions

ps : B × Cs(A,B)→ [0, 1],

pd : Cd(A,B)→ [0, 1],

pi : B × Ci(A,B)→ [0, 1],

pe : Ce(A,B)→ [0, 1].

(13)

As there is no danger of confusion, they bear the same names as the functions
occurring in (10). A statement of condition (10) in these terms is

∀γ ∈ C◦(A,B) :

pd(πd(γ)) + pe(πe(γ)) +
∑
r∈B

(pi(r, πi(γ)) + ps(r, πs(γ))) = 1, (14)

∀γ ∈ C(A,B) \ C◦(A,B) : pe(πe(γ)) +
∑
r∈B

pi(r, πi(γ)) = 1. (15)
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Note that the finiteness of the sets Cs(A,B), Cd(A,B), Ci(A,B), and Ce(A,B),
implies that, in total, each of (14) and (15) give finitely many equations.

The ultimate aim of channel modeling is to estimate the probability
measures νx defining the channel as described in the introduction. For a
given input sequence x, thought to be infinite in both directions, νx is a
probability measure on the space B Z of possible output sequences. Assuming
that we already received symbols

. . . , y−n, . . . , y−2, y−1, (16)

let us define C−(y) to be the set of all sequences z ∈ B Z with zk = yk for
indices k < 0. In addition, for β ∈ B denote by C0(β) ⊂ B Z the set of all
output sequences z with z0 = β. Then νx gives rise to a probability measure
on B assigning to each β ∈ B the conditional probability νx,y that the next
received symbol is β, under the condition that x is emitted and the part of
y with negative indices has already been received:

νx,y(β) :=
νx(C−(y) ∩ C0(β))

νx(C−(y))
. (17)

To see what is the relation between functions (13) and the νx,y(β), a
more subtle modeling is necessary. Choose a symbol 0 not occurring in the
input alphabet A, let A0 := A∪ {0}, and use the following notation for the
set of input strings:

Sin(A) :=

x ∈ (A0)Z

∣∣∣∣∣∣∣
there are integers `−(x) < 0 ≤ `+(x)

such that xj ∈ A for `−(x) < j < `+(x)

and xj = 0 otherwise.

 .

Similarly, supposing that 0 /∈ B and putting B0 := B∪{0}, the set of output
strings is denoted by

Sout(B) :=

y ∈ (B0)Z

∣∣∣∣∣∣∣
there are integers `−(y) < 0 ≤ `+(y)

such that yj ∈ B for `−(y) < j < `+(y)

and yj = 0 otherwise.

 .

These sets are, in some sense, ‘fixed at the origin’, meaning the following:
If we take x ∈ Sin(A) and y ∈ Sout(B), omit the 0’s to obtain finite strings,
and close each of them by symbols 〈 and 〉, we obtain

x̂ := 〈x`−(x)+1 . . . x`+(x)−1〉,
ŷ := 〈y`−(y)+1 . . . y`+(y)−1〉.

If we build the trellis T from them, then (y−1, x0) is the label of a panel
(i, j), say, in this trellis. The context of this panel is

CT (i, j) =
(
〈y`−(y)+1 . . . y−1 , 〈x`−(x)+1 . . . x−1 , x0 . . . x`+(x)−1〉

)
.
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If π is one the maps {πs, πd, πi, πe} from (11), then we write for abbreviation

π(ŷ, x̂) := π(CT (i, j))

such that y−1 is the just received symbol and x0 is the next coming symbol.
Observe that νx,y(β) is defined according to (17) for x ∈ Sin(A), y ∈

Sout(B), and β ∈ B0. In order to express νx,y(β) in terms of the π’s (11) and
the p’s (13), we need the shift map by m steps to the left defined by

(·)(m) : (A0)Z → (A0)Z, x(m)
n := xn+m for each n ∈ Z.

Now νx,y(β) should be the probability that y0 = β under the condition that
x is the input string and y has been received up to y−1. In principle, there
are two possibilities for y0 = β: either β is inserted now by a substitution
or an insertion, or the next operation is a deletion and β is inserted later. If
β = 〉 , there is the additional possibility that β is inserted by an operation
of type e which has been assigned a probability by the function pe from (13).

Suppose first that β ∈ B. Then the probability that β is put into the
output by the subsequent editing operation is

pi (β, πi(ŷ, x̂)) + ps (β, πs(ŷ, x̂)) .

The probability that β is put into the output by a deletion followed by a
substitution or insertion is

pd (πd(ŷ, x̂))
(
pi
(
β, πi(ŷ, x̂

′)
)

+ ps
(
β, πs(ŷ, x̂

′)
))
.

If there are exactly m deletions before β is inserted, then the probability is

P (β | x, y,m) :=

m−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) ·

·
(
pi
(
β, πi(ŷ, x̂

(m))
)

+ ps
(
β, πs(ŷ, x̂

(m))
))
,

(18)

where the empty product is set to 1. Because the ‘end of message’ symbol
〉 has index `+(x) ≥ 0, there are at most `+(x) symbols 6= 〉 that can be
deleted. As the ‘end of message’ symbol cannot be substituted, formula (18)
is only valid for

m ∈ {0, . . . , `+(x)− 1}.

For m = `+(x), we have

P (β | x, y, `+(x)) =

`+(x)−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) · pi(β, πi(ŷ, x̂(`+(x)))

)
. (19)
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In the case β = 0, we have to compute the probability that the next received
symbol is the ‘end of message’ character 〉 . This probability is measured by
the concatenation

pe ◦ πe : C(A,B)→ Ce(A,B)→ [0, 1].

In addition, we have to take into account that the insertion of 〉 may be
preceded by at most `+(x) deletions. If there are exactly m ∈ {0, . . . , `+(x)}
deletions in advance, then

P (0 | x, y,m) =

m−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) · pe(πe(ŷ, x̂(m))

)
. (20)

The next result formalizes the idea that the quantities P (β | x, y,m) are
useful for channel modeling.

Theorem 1 Suppose that x ∈ Sin(A), y ∈ Sout(B), and β ∈ B0,

νx,y(β) :=

`+(x)∑
m=0

P (β | x, y,m),

then ∀x ∈ Sin(A) ∀y ∈ Sout(B) :
∑
β∈B0

νx,y(β) = 1.

Proof First let m ∈ {0, . . . , `+(x) − 1}, and let us compute, using (18),
(20): ∑

β∈B0

P (β | x, y,m) =

=

m−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) ·

pe(πe(ŷ, x̂(m))
)

+

+
∑
β∈B

(
pi
(
β, πi(ŷ, x̂

(m))
)

+ ps
(
β, πs(ŷ, x̂

(m))
))

=

m−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) · (1− pd

(
πd(ŷ, x̂

(m))
))
, (21)

where, in addition, (14) has been used for the last equation. Next consider
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m = `+(x). We get, using (19), (20):∑
β∈B0

P (β | x, y, `+(x)) =

=

`+(x)−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) ·

·

pe(πe(ŷ, x̂(`+(x)))
)

+
∑
β∈B

pi
(
β, πi(ŷ, x̂

(`+(x)))
) ,

and (15) proves

∑
β∈B0

P (β | x, y, `+(x)) =

`+(x)−1∏
j=0

pd
(
πd(ŷ, x̂

(j))
) . (22)

To prove the theorem, it remains to sum the terms (21) from m = 0 to
m = `+(x)− 1, and then add the term in (22). But this sum is telescoping
giving 1, which completes the proof of the theorem.

4 Expectation-estimation algorithm

The functions ps, pd, pi, and pe, announced in (13) to contain the transition
probabilities needed for channel modeling are ‘trained’ using an algorithm
similar to a well-known statistical method called expectation maximization
(abbreviated ‘EM’); for a general account, see, for instance, Bishop [2],
p. 450f. EM is especially apt when parameters are to be estimated whose
direct observation is not possible, e.g., the probabilities of hidden transitions
in a trellis.

Like the EM-algorithm, the algorithm presented here starts with an ini-
tialization for the parameters to be constructed in a probability matrix and
improves their values in each step of a main loop. The main loop first initial-
izes a count matrix, and then triggers a training loop over a given training
corpus of weighted input-output pairs. For each input-output pair, a trel-
lis is built and evaluated in the sense that to each arrow a weighted count
is associated, which is then used to increment the count matrix. Having
processed all given input-output pairs, the count is the basis for updating
the probability matrix. In the classical EM-algorithm, updating is achieved
by maximizing some likelhood function. Here we replace maximization by a
more general probability estimation step. We shall see that numerical stabil-
ity would not be guaranteed without certain ‘smoothness’ conditions, which
is one reason for seeking another, but mathematically founded, estimation
procedure.

12



Let us now have a look at the training loop or inner loop, and let us
fix for the moment an input string c1 . . . c`0 ∈ Sin(A) and an output string
r1 . . . r`1 ∈ Sout(B). We use the trellis (23) which is an augmented version
of (3), augmented by arrows from the last column, i.e. panels with indices
(`1, 0), . . . , (`1, `0) and labels

(r`1 , c1), . . . , (r`1 , c`0), (r`1 , 〉 ),

to an additional panel labeled ( 〉 , 〉 ) (we don’t need indices for this addi-
tional panel). These augmenting arrows will carry the information used to
‘train’ the function pe.

• ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ •
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.................................................................................................. .................

.................................................................................................. .................

.................................................................................................. .................

.................................................................................................. .................

.................................................................................................. .................
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.................................................................................................. ................. .................................................................................................. .................

c1

...

c`0

〉

label

0

...

`0 − 1

`0

index

〈 r1 . . . r`1 〉 label

0 1 . . . `1 index

(23)

In the following table we indentify to each editing operation the correspond-
ing arrows in this trellis.

Editing operation starting indices (i, j) of arrows

Substitution: 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0 − 1,

Deletion: 0 ≤ i ≤ `1 and 0 ≤ j ≤ `0 − 1,

Insertion: 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0,

Ending : i = `1 and 0 ≤ j ≤ `0.


(24)

To describe the algorithm, assume a context structure

Π = (πs, πd, πi, πe)

as depicted in (11) to be given. Then the algorithm operates on the following
data:

• A real vector

P̂ =
((
p̂s(r, γ) : r ∈ B, γ ∈ Cs(A,B)

)
,
(
p̂d(γ) : γ ∈ Cd(A,B)

)
,(

p̂i(r, γ) : r ∈ B, γ ∈ Ci(A,B)
)
,
(
p̂e(γ) : γ ∈ Ce(A,B)

))
containing the current estimates for the probabilities. This vector is
held constant during each execution of the body of the main loop.
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• A real vector

C =
((
Cs(r, γ) : r ∈ B, γ ∈ Cs(A,B)

)
,
(
Cd(γ) : γ ∈ Cd(A,B)

)
,(

Ci(r, γ) : r ∈ B, γ ∈ Ci(A,B)
)
,
(
Ce(γ) : γ ∈ Ce(A,B)

))
containing the count data, which is updated after each execution of
the body of the inner loop. Note that we will use weighted counts,
whence the components of this vector are non-negative real numbers.

• Three real matrices and a real vector containing the weighted count
data associated to the different editing arrows in an inner loop trellis
(23). The dimensions of this structures can be taken from (24):

– Substitution counts: S(i, j) with 0 ≤ i ≤ `1−1 and 0 ≤ j ≤ `0−1.

– Deletion counts: D(i, j) with 0 ≤ i ≤ `1 and 0 ≤ j ≤ `0 − 1.

– Insertion counts: I(i, j) with 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0.

– Ending counts: E(j) with 0 ≤ j ≤ `0.

These four structures are initialized by the current estimates for the
probabilities which are available in P̂ at the beginning of the body
of the training loop, and are no longer used after updating the count
data.

• A real matrix F of size (`1 + 1) × (`0 + 1) to compute the current
estimate p̂io for the total probability of an input-output pair. This
structure is only used in the forward step of the inner loop, where it
is initialized anew for each input-output pair.

We are now ready to give the algorithm in detail. To start, we first give
a survey to describe its general structure in pseudo-code.

Initialize the vector P̂ with appropriate initial probabilities.

Main loop.

Initialize the count vector C by zeros.

Expectation step.

Training loop. Do for each input-output pair:

Initialize the structures S, D, I, and E using P̂ .

Forward step: Compute p̂io.

Backward step: Normalize S, D, I, and E.

Update the count vector C.

Continue with next input-output pair.
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End of Training loop.

Estimation step.

Determine the next vector P̂ from the count vector C.

Continue or end, the decision being based on some stop condition.

End of main loop.

Next we go deeper into the details, beginning with the expectation step
which consists of a loop over all input-output pairs in a previously specified
training corpus. For each training pair (sin, sout), we use our current estimate
of probabilities to approximately compute the conditional probability p̂io for
receiving sout when sin is transmitted through the channel. To compute the
total probability to receive sout when sin is sent from the current estimates
recorded in P̂ , we would have to consider all possible editing paths leading
from sin to sout and sum up estimates for the path probabilities. In order
to compute a path probability, we would have to multiply the conditional
(i.e., context-dependent) probabilities of the elementary editing operations
the path consists of.

In this algorithm, we only take into account the paths occurring in the
trellis, which are just the compositions of arrows leading from the panel
indexed (0, 0) to the panel labeled ( 〉 , 〉 ); note that the number of these
paths can be computed using formula (5). The restriction to this trellis is
forced by the choice of what kind of arrows are considered, i.e., by the types
of elementary editing operations and associated movings of the pointer to
the next coming symbol.

In order to compute the probability estimate p̂io, we do not expand all
paths but use a trick from the statistical treatment of Hidden Markov chains
which is well-known as Baum-Welch algorithm, see [1] for an early source.
It consists of computing, for each panel (i, j), the total probability of all
trellis paths leading from panel (0, 0) to it, which can easily be done line by
line, starting with the lowest line and working through each line from left
to right (or, alternatively, row by row, starting with the left-most row and
working through each row upwards).

Our first step for the inner loop is initialization of our auxiliary struc-
tures.

Initialize the structures S, D, I, and E using P̂ :

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0 − 1

put S(i, j) := p̂s(ri, πs(CT (i, j)))

for 0 ≤ i ≤ `1 and 0 ≤ j ≤ `0 − 1

put D(i, j) := p̂d(ri, πd(CT (i, j)))

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0
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put I(i, j) := p̂i(ri, πi(CT (i, j)))

for 0 ≤ j ≤ `0
put E(j) := p̂e(πe(CT (`1, j)))

End of Initialize.

Then the forward step to compute our approximation p̂io proceeds line by
line through the trellis, starting with the lowest line and moving upwards
up to the line with index `1:

Forward step to compute p̂io.

put F (0, 0) := 1,

for i = 1 step 1 while i ≤ `1 do

put F (i, 0) := F (i− 1, 0) ∗ I(i− 1, 0),

for j = 1 step 1 while j ≤ `0 do

put F (0, j) := F (0, j − 1) ∗D(0, j − 1),

for i = 1 step 1 while i ≤ `1 do

put F (i, j) := F (i− 1, j − 1) ∗ S(i− 1, j − 1),

augment F (i, j) by F (i− 1, j) ∗D(i− 1, j),

augment F (i, j) by F (i, j − 1) ∗ I(i, j − 1),

put p̂io := F (`1, 0) ∗ E(0),

for j = 1 step 1 while j ≤ `0 do

augment p̂io by F (`1, j) ∗ E(j),

End of Forward step.

To use the data from the present input-output pair (sin, sout) for incre-
menting our count vector, a possibility would be to choose the path which
is ‘most likely’ according to the current probability estimates, and incre-
ment by 1 the corresponding context-dependent count for each arrow of this
maximal path. But it seems to be more natural, and more precise, to use
the data collected in the structures S, D, I, and E, to compute weighted
counts for incrementation. To this end, we first compute approximations to
the conditional arrow probabilities, conditioned both on contexts and the
given observation (sin, sout). This is achieved by taking, for each arrow, the
quotient of the initial arrow probability as above and p̂io.

Backward step to normalize S, D, I, and E.

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0 − 1

replace S(i, j) by S(i, j)/p̂io,

for 0 ≤ i ≤ `1 and 0 ≤ j ≤ `0 − 1
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replace D(i, j) by D(i, j)/p̂io,

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0
replace I(i, j) by I(i, j)/p̂io,

for 0 ≤ j ≤ `0 − 1

replace E(j) by E(j)/p̂io,

End of Backward step.

Then the obtained wieghted counts are used to increment (or update) the
count vector.

Update the count vector C:

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0 − 1

augment Ns(ri, πs(CT (i, j))) by S(i, j),

for 0 ≤ i ≤ `1 and 0 ≤ j ≤ `0 − 1

augment Nd(πd(CT (i, j))) by D(i, j),

for 0 ≤ i ≤ `1 − 1 and 0 ≤ j ≤ `0
augment Ni(ri, πi(CT (i, j))) by I(i, j),

for 0 ≤ j ≤ `0 − 1

augment Ne(πe(CT (`1, j))) by E(j).

End of Update.

There are three steps of the algorithm remaining: initialization, determi-
nation of the next P̃ , and the stop condition. The problem how to determine
the next P̃ from the count vector C will be dealt with in the next section.
The stop condition is not really addressed on in this paper: A good idea
would be to use some measure for the size of the difference between the
current probability estimate P̂ and the preceding one, and, in addition, to
bound in advance the total looping number of the main loop.

To see the numerical problem in which we would run with a too näıve
initialization, consider a situation where input alphabet and output alphabet
coincide, A = B, and where initialization of P̂ is done in the ‘natural’ way,
i.e., for any given context, self-substitution gets probability one and any
error gets probability zero. With this current probability estimate, if there
is a training pair (sin, sout) with sin 6= sout, we would have p̂io = 0 for this
pair, and the backward step would be impossible. To guarantee possibility
of the backward step of the described algorithm, we choose a real threshold
m > 0, and impose the following condition:

each component of P̂ is to be ≥ m. (25)

Possibility of the backward step is clearly guaranteed if the threshold ful-
fills m`0+`1 > xmin, where (`0, `1) are the maximal lengths of input-output
pairs, and xmin is the smallest positive number expressible on the employed
computation machine.
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5 Estimation of probabilities

The vector P̂ needed in the algorithm is structured according to the context
structure employed, and subject to conditions (14) and (15). Hence, P̂ is
much more complicate than a standard probability vector which may be
defined as a finite sequence of non-negative real numbers which add up to
one. Estimating such a probability vector from data, being a special point
estimation problem, is well-studied in probability theory, see, for instance,
Lehmann and Casella [6]. The aim of this section to give conditions on the
context structure which imply that the problem of estimating a vector P̂ of
probabilities as it is needed in the algorithm can be reduced to finitely many
such point estimation problems. An method based on a Bayesian procedure
using a loss function leading to a probability vector meeting condition (25),
is going to be described in [3].

Let Π := (πs, πd, πi, πe) be a finite context structure consisting of four
algorithmically defined maps as in (11),

πs : C◦(A,B)→ Cs(A,B), πd : C◦(A,B)→ Cd(A,B),

πi : C(A,B)→ Ci(A,B), πe : C(A,B)→ Ce(A,B).

The algorithm described in the preceding section requires a fixed context
structure Π. Then both the probability vector P̂ and the count vector C,
as they occur in the algorithm, look like

Q =
((
Qs(r, γ) : r ∈ B, γ ∈ Cs(A,B)

)
,
(
Qd(γ) : γ ∈ Cd(A,B)

)
,(

Qi(r, γ) : r ∈ B, γ ∈ Ci(A,B)
)
,
(
Qe(γ) : γ ∈ Ce(A,B)

))
,

(26)

where each entry of this vector is a non-negative real number. We say that
a vector Q corresponds to a context structure Π, if it can be written in the
form (26). This means, Q corresponds to Π if and only if Q is indexed on
the index set

IΠ := I(πs) ∪ I(πd) ∪ I(πi) ∪ I(πe),

where

I(πs) := {s} × B × Cs(A,B), I(πd) := {d} × Cd(A,B),

I(πi) := {i} × B × Ci(A,B), I(πe) := {e} × Ce(A,B).

Comparing this notation to (26), we infer that a real vector Q which corre-
sponds to a context structure Π can be viewed as a map

Q : IΠ → R. (27)

The projections πs, πd, πi, and πe together define a map ∆Π from all
possible contexts to the power set of IΠ, which assigns to each context γ ∈
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C(A,B) the set of those indices of a vector corresponding to Π which contain
a projection of γ. To get an explicit expression of this map, first define, for
each type t ∈ {s, d, i, e}, the set-valued map δt : C(A,B)→ P(I(πt)) by

δs(γ) :=

{
∅ if γ /∈ C◦(A,B),

{(s, r, πs(γ)) | r ∈ B} otherwise,

δd(γ) :=

{
∅ if γ /∈ C◦(A,B),

{(d, πd(γ))} otherwise,

δi(γ) := {(i, r, πi(γ)) | r ∈ B},

δe(γ) := {(e, πe(γ))}.

(28)

Then the map ∆Π : C(A,B)→ P(IΠ) is given by

∆Π(γ) := δs(γ) ∪ δd(γ) ∪ δi(γ) ∪ δe(γ). (29)

With this notation, for a vector Q corresponding to Π, the conjunction of
conditions (14) and (15) is equivalent to the condition

∀γ ∈ C(A,B) :
∑

x∈∆Π(γ)

Q(x) = 1. (30)

As the set of possible contexts C(A,B) is infinite, condition (30) involves
infinitely many equations: one for each γ. The set of variables which occur
in these equations is IΠ, which is a finite set, whence the set of different
equations among the equations (30) is also finite. The problem is that
the equations cannot be treated independently, as there may be different
equations sharing variables. This means that there may be contexts γ, γ′ ∈
C(A,B) with ∆Π(γ) 6= ∆Π(γ′) and ∆Π(γ) ∩∆Π(γ′) 6= ∅.

To understand what this means for the maps defining the context struc-
ture, we say that a context structure Π = (πs, πd, πi, πe) is normal, or uses
equal contexts, if there are bijections βs, βi, and an injection ιd, which extend
diagram (11) to the following commutative diagram:

C◦(A,B)⋂
C(A,B)

Cs(A,B)

Cd(A,B)

Ci(A,B)

Ce(A,B)

..................................
..................................

..................................
..................................

..................................
..................................

..............................................

...................................................................................................................................................................................................... .................

...................................................................................................................................................................................................... .................

..................................................................................................................................................................................................................................... .................

πs

πd

πi

πe

↓ βs

↓ ιd

↓ βi

(31)
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Example 2 The following context structure uses equal contexts:

Cs(A,B) := Cd(A,B) :=
(
B ∪ { 〈 }

)
×A,

πs(CT (i, j)) := πd(CT (i, j)) := (ri, cj+1),

Ce(A,B) := Ci(A,B) :=
(
B ∪ { 〈 }

)
×
(
A ∪ { 〉 }

)
,

πi(CT (i, j)) := πe(CT (i, j)) := (ri, cj+1).

Indeed, if we set βs to be the identity map on
(
B ∪ { 〈 }

)
× A, ιd to the

canonical inclusion
(
B ∪ { 〈 }

)
×A ↪→

(
B ∪ { 〈 }

)
×
(
A∪ { 〉 }

)
, and βi to the

identity map on
(
B ∪ { 〈 }

)
×
(
A ∪ { 〉 }

)
, then diagram (31) commutes. �

Lemma 2 For a context structure Π, the following assertions are equiva-
lent:

(a) Π is normal.

(b) For %, %′ ∈ C(A,B), either ∆(%) = ∆(%′) or ∆(%) ∩∆(%′) = ∅.

Proof We will need the following assertion, which is an immediate conse-
quence of (28):

∀ t, t′ ∈ {s, d, i, e} : t 6= t′ ⇒ δt(%) ∩ δt(%′) = ∅. (32)

To prove the implication (a) ⇒ (b), let %, %′ ∈ C(A,B) be such that
∆Π(%) 6= ∆Π(%′). By definition of ∆Π, this inequality means

∃ t ∈ {s, d, i, e} : δt(%) 6= δt(%
′).

This implies πt(%) 6= πt(%
′), from which we infer by chasing through diagram

(31), and thereby using injectivity of βs, ιd, and βi, that

∀ t ∈ {s, d, i, e} :


either t ∈ {s, d} and % /∈ C◦(A,B),

or t ∈ {s, d} and %′ /∈ C◦(A,B),

or πt(%) 6= πt(%
′).

By the construction of the δt(%) in (28), this proves

∀ t ∈ {s, d, i, e} : δt(%) ∩ δt(%′) = ∅. (33)

Again by the definition of ∆Π, combining this with (32) implies

∆Π(%) ∩∆Π(%′) = ∅,

which completes the proof of (b).
A proof of implication (b) ⇒ (a) requires that we prove existence of

bijections βs, βi, and an injection ιd, which make diagram (31) commute.
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To construct βs, let σ ∈ Cs(A,B) and use surjectivity of πs to choose
% ∈ C◦(A,B) such that σ = πs(%). We will prove that

βs(σ) := πd(%)

is well-defined. To see this, suppose that %′ ∈ C◦(A,B) is another context
giving σ = πs(%

′). Then, by (28), δs(%) = δs(%
′) 6= ∅, which implies ∆Π(%)∩

∆Π(%′) 6= ∅, from which we infer by (b) that

∆Π(%) = ∆Π(%′).

Now (32) and (28) prove that πd(%) = πd(%
′) as required.

The injection ιd and the other bijection βi are defined by

ιd(σ) := πi(%) for σ ∈ Cd(A,B) and % ∈ π−1
d (σ),

βi(σ) := πe(%) for σ ∈ Ci(A,B) and % ∈ π−1
i (σ),

respectivly. The proofs of well-definedness run exactly as in case of the
bijection βs.

Now we are ready to formulate a result which reduces the probability
estimation problem of the algorithm to the estimation of finitely many prob-
ability measures on finite state spaces from data.

Corollary 3 Let Π be a finite context structure using equal contexts. Then
there is a partition of IΠ into pairwise disjoint sets ∆1, . . . ,∆ν such that
condition (30) is equivalent to

∀i ∈ {1, . . . , ν} :
∑
x∈∆i

Q(x) = 1.
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