Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Normal distribution assumption and least squares estimation function in the model of polynomial regression

Titelangaben

Verfügbarkeit überprüfen

Bischoff, Wolfgang ; Cremers, Heinz ; Fieger, Werner:
Normal distribution assumption and least squares estimation function in the model of polynomial regression.
In: Journal of multivariate analysis. 36 (1991). - S. 1-17.
ISSN 0047-259x ; 1095-7243

Kurzfassung/Abstract

In a linear model $Y=X\beta +Z$ a linear functional $\beta \mapsto \gamma '\beta$ is to be estimated under squared error loss. It is well-known that, provided Y is normally distributed, the ordinary least squares estimation function minimizes the risk uniformly in the class ${\cal P}$ of all equivariant estimation functions and is admissible in the class ${\cal E}$ of all unbiased estimation functions. For the design matrix X of a polynomial regression set up it is shown for almost all estimation problems that the ordinary least squares estimation function is uniformly best in ${\cal P}$ and also admissible in ${\cal E}$ only if Y is normally distributed.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:normal distribution; admissible estimation functions; linear model; linear functional; squared error loss; ordinary least squares estimation; equivariant estimation functions; unbiased estimation functions; polynomial regression
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik und Stochastik
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:3822
Eingestellt am: 19. Mär 2010 15:42
Letzte Änderung: 10. Jun 2016 11:11
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/3822/
AnalyticsGoogle Scholar