Titelangaben
Bischoff, Wolfgang ; Cremers, Heinz ; Fieger, Werner:
Normal distribution assumption and least squares estimation function in the model of polynomial regression.
In: Journal of multivariate analysis. 36 (1991).
- S. 1-17.
ISSN 0047-259x ; 1095-7243
Kurzfassung/Abstract
In a linear model $Y=X\beta +Z$ a linear functional $\beta \mapsto \gamma '\beta$ is to be estimated under squared error loss. It is well-known that, provided Y is normally distributed, the ordinary least squares estimation function minimizes the risk uniformly in the class ${\cal P}$ of all equivariant estimation functions and is admissible in the class ${\cal E}$ of all unbiased estimation functions. For the design matrix X of a polynomial regression set up it is shown for almost all estimation problems that the ordinary least squares estimation function is uniformly best in ${\cal P}$ and also admissible in ${\cal E}$ only if Y is normally distributed.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | normal distribution; admissible estimation functions; linear model; linear functional; squared error loss; ordinary least squares estimation; equivariant estimation functions; unbiased estimation functions; polynomial regression |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik |
Peer-Review-Journal: | Ja |
Verlag: | Elsevier |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 3822 |
Letzte Änderung: 10. Jun 2016 11:11
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/3822/