Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

On D-optimal designs for linear models under correlated observations with an application to a linear model with multiple response

Titelangaben

Verfügbarkeit überprüfen

Bischoff, Wolfgang:
On D-optimal designs for linear models under correlated observations with an application to a linear model with multiple response.
In: Journal of statistical planning and inference. 37 (1993). - S. 69-80.
ISSN 0378-3758

Kurzfassung/Abstract

In the general linear model we set conditions under which an exact $D$- optimal design for uncorrelated observations with common variance is also $D$-optimal for correlated observations. Further we determine conditions under which approximate $D$-optimal designs can be considered as approximate $D$-optimal designs for correlated observations. Then these results are applied to a regression model with multiple response generalizing Theorem 1 of {\it O. Krafft} and {\it M. Schaefer} in J. Multivariate Anal. 42, No. 1, 130-140 (1992; Zbl 0774.62081).\par In the above context, however, a serious problem may arise if the covariance matrix is not known; for the Gauss-Markov estimator with respect to a $D$-optimal design does not need to be calculable for the correlated case. This leads to $D$-optimal-invariant designs introduced by the author [Ann. Inst. Stat. Math. 44, No. 2, 229-238 (1992; Zbl 0781.62117)]; such a design $\tau\sp*$ remains $D$-optimal when the covariance matrix is changed, and additionally the Gauss-Markov estimator with respect to the design $\tau\sp*$ stays fixed. For regression models with multiple response we determine classes of covariance matrices for which a $D$-optimal design for uncorrelated observations with common variance is $D$-optimal-invariant. As examples we consider linear models where each response belongs to a regression model with intercept term.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:exact $D$-optimal design; approximate $D$-optimal designs; $D$-optimal- invariant designs; robustness against disturbances of the covariance matrix; general linear model; uncorrelated observations; common variance; correlated observations; multiple response; Gauss-Markov estimator; linear models; intercept term
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Statistik und Stochastik
Peer-Review-Journal:Ja
Verlag:North-Holland Publ. Co.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:3818
Eingestellt am: 19. Mär 2010 15:31
Letzte Änderung: 19. Mär 2010 15:31
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/3818/
AnalyticsGoogle Scholar