Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

AI's assigned gender affects human-AI cooperation

Titelangaben

Verfügbarkeit überprüfen

Bazazi, Sepideh ; Karpus, Jurgis ; Yasseri, Taha:
AI's assigned gender affects human-AI cooperation.
In: iScience. 28 (19. Dezember 2025) 12: 113905.
ISSN 2589-0042

Volltext

Kurzfassung/Abstract

Cooperation between humans and machines is increasingly vital as artificial intelligence (AI) becomes integrated into daily life. Research shows that people are often less willing to cooperate with AI agents than with humans and are more likely to exploit AI for personal gain. While prior studies indicate that human-like features in AI influence cooperation, the impact of AI’s assigned gender remains underexplored. This study investigates how cooperation varies with the gender labels assigned to AI partners. In a Prisoner’s Dilemma game, 402 participants interacted with partners labeled as AI or human, and as male, female, non-binary, or gender-neutral. Participants exploited female-labeled and distrusted male-labeled AI agents more than human counterparts with the same gender labels, reflecting gender biases similar to those in human-human interactions. These findings underscore the importance of accounting for gender bias in AI design, policy, and regulation.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:artificial intelligence; emotion in artificial intelligence; human-level artificial intelligence; social sciences; psychology
Themenfelder:Transformation
Sprache des Eintrags:Englisch
Institutionen der Universität:School of Transformation and Sustainability > Professur für Philosophie und Ethik der Digitalisierung
Weitere URLs:
DOI / URN / ID:10.1016/j.isci.2025.113905
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:35973
Eingestellt am: 22. Dez 2025 11:10
Letzte Änderung: 22. Dez 2025 11:10
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35973/
AnalyticsGoogle Scholar