Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Truck drone arc covering problem with an application and case study in disaster management

Titelangaben

Verfügbarkeit überprüfen

Rave, Alexander ; Fontaine, Pirmin:
Truck drone arc covering problem with an application and case study in disaster management.
In: Annals of Operations Research. (15. September 2025).
ISSN 0254-5330 ; 1572-9338

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (2MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s10479-025-06829-9

Kurzfassung/Abstract

River exploration during, before, or after floods enables operators in civil protection and disaster control to better prepare for or even prevent disasters. While typically, this river exploration is done by boat, truck, helicopter, or even not at all, autonomous flying drones equipped with a camera can enhance this process. Moreover, interaction between a truck and a drone can enable the drone to be used flexibly and extend its short range. Thus, the Bavarian Red Cross equipped a truck with a drone for river coverage. Based on this real case, we introduce a truck drone arc covering problem (TD-ACP) for the application of river coverage. We formulate the TD-ACP as a mixed-integer linear program and introduce valid inequalities that strengthen the formulation and allow us to solve realistic-sized instances to optimality. In a real-world case study involving an actual river, we demonstrate that using drones for river coverage can reduce coverage time by 56.3% compared to boats and by 28.1% compared to trucks. Additionally, we propose a manual planning heuristic that is straightforward for practitioners to apply and achieves an optimality gap of 4.0% on this specific river.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Logistik und Operations Analytics
DOI / URN / ID:10.1007/s10479-025-06829-9
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer Science + Business Media
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:35662
Eingestellt am: 08. Okt 2025 14:41
Letzte Änderung: 08. Okt 2025 14:41
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35662/
AnalyticsGoogle Scholar