Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Integrating Conjoint and Maximum Difference Scaling Data

Titelangaben

Verfügbarkeit überprüfen

Liu, YiChun Miriam ; Büschken, Joachim ; Orme, Bryan ; Allenby, Greg M.:
Integrating Conjoint and Maximum Difference Scaling Data.
In: Management science. (18. März 2025).
ISSN 0025-1909 ; 1526-5501

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1287/mnsc.2023.02560

Kurzfassung/Abstract

Customer preferences for product features play an important role in designing successful goods and services. Preferences for features are typically obtained by utilizing a model of choice where the utility for all but one level of an attribute is estimable. That is, the traditional discrete choice model can provide information on the change in utility between attribute-levels, but cannot separately estimate the utility associated with all levels of an attribute. In this paper, we propose a model that integrates conjoint and Maximum Difference scaling data to identify part-worth utilities for all product features, using the outside good as a common reference level, instead of the usual practice of having a reference level for each product attribute. The preference data are also integrated with satisfaction data to identify market opportunities for new and existing products. We illustrate our model with data from a survey measuring customer satisfaction and preferences for large-screen TVs.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Absatzwirtschaft und Marketing
DOI / URN / ID:10.1287/mnsc.2023.02560
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:INFORMS
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:35299
Eingestellt am: 12. Jun 2025 09:29
Letzte Änderung: 12. Jun 2025 09:29
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/35299/
AnalyticsGoogle Scholar