Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Identification of damage severity in Fraxinus excelsior L. trees caused by ash dieback using multisensory and multitemporal UAV imagery

Titelangaben

Verfügbarkeit überprüfen

Buchner, Lisa ; Eisen, Anna-Katharina ; Jochner-Oette, Susanne:
Identification of damage severity in Fraxinus excelsior L. trees caused by ash dieback using multisensory and multitemporal UAV imagery.
In: Forest ecology and management. 585 (Juni 2025): 122660.
ISSN 0378-1127

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (4MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.foreco.2025.122660

Kurzfassung/Abstract

The extended spread of ash dieback in Europe has far-reaching consequences for Fraxinus excelsior L. populations. The progression of the disease leads to characteristic symptoms, particularly within the tree crowns. To date, assessing the damage severity of each individual tree typically requires in-field inspections. However, UAVs equipped with RGB, thermal, and multispectral sensors offer cost-effective and objective possibilities. This study relied on such analyses and focused on two ash seed orchards in Baden-Wuerttemberg, Germany, where visual inspections were compared with multisensorial data obtained in spring, summer and autumn of 2022 and 2023. The calculated RGB and multispectral vegetation indices were able to significantly discriminate between different degrees of damage due to ash dieback; in contrast, thermal data were less reliable and linked to different dynamics. Novel thresholds applied to the vegetation indices enabled a classification of mild and severe damage with an overall accuracy of 74.9 % for the multispectral index DVI (Difference Vegetation Index) and 73.0 % for the RGB index GRVI (Green-Red Vegetation Index). Combining RGB and multispectral indices further improved the overall accuracy to 77.2 %. The presented workflow offers forest practitioners an accessible toolset for evaluating the health status of ash populations affected by ash dieback.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Common ash; Hymenoscyphus fraxineus; Multispectral; RGB; Thermal; Thresholding; Vegetation indices
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Geographie > Professur für Physische Geographie/Landschaftsökologie und nachhaltige Ökosystementwicklung
DOI / URN / ID:10.1016/j.foreco.2025.122660
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:34886
Eingestellt am: 24. Mär 2025 09:00
Letzte Änderung: 24. Mär 2025 09:00
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34886/
AnalyticsGoogle Scholar