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A B S T R A C T

The extended spread of ash dieback in Europe has far-reaching consequences for Fraxinus excelsior L. populations. 
The progression of the disease leads to characteristic symptoms, particularly within the tree crowns. To date, 
assessing the damage severity of each individual tree typically requires in-field inspections. However, UAVs 
equipped with RGB, thermal, and multispectral sensors offer cost-effective and objective possibilities. This study 
relied on such analyses and focused on two ash seed orchards in Baden-Wuerttemberg, Germany, where visual 
inspections were compared with multisensorial data obtained in spring, summer and autumn of 2022 and 2023. 
The calculated RGB and multispectral vegetation indices were able to significantly discriminate between 
different degrees of damage due to ash dieback; in contrast, thermal data were less reliable and linked to different 
dynamics. Novel thresholds applied to the vegetation indices enabled a classification of mild and severe damage 
with an overall accuracy of 74.9 % for the multispectral index DVI (Difference Vegetation Index) and 73.0 % for 
the RGB index GRVI (Green-Red Vegetation Index). Combining RGB and multispectral indices further improved 
the overall accuracy to 77.2 %. The presented workflow offers forest practitioners an accessible toolset for 
evaluating the health status of ash populations affected by ash dieback.

1. Introduction

The common ash (Fraxinus excelsior L.) in Europe is seriously 
threatened in its existence due to the ash dieback disease caused by the 
invasive fungal pathogen Hymenoscyphus fraxineus (T. Kowalski) Baral, 
Queloz, Hosoya (Baral et al., 2014). Since the first documentation of ash 
dieback in Poland in the 1990s (Kowalski, 2006, Timmermann et al., 
2011), the disease has become increasingly widespread across Europe, 
causing extensive damage to ash populations. Infected trees present 
typical symptoms of dying shoots and increased leaf loss with thinning 
of the crowns. Especially in more severely damaged trees, epicormic 
shoots often constitute a large part of the remaining foliage. Ash dieback 
is linked to a high mortality rate amongst the affected trees (Enderle 
et al., 2019), and the European ash populations are expected to drasti
cally decrease over the next few decades (Coker et al., 2019). In Ger
many, the European common ash is a common tree species both in 
forests and non-forest sites, such as private gardens, along rivers or in 
public spaces (Enderle et al., 2017a). In 2022, the forth National Forest 
Inventory documented that ash accounted for 1.8 % of Germany’s total 
forest area (BMEL, 2024). As an ecologically vital tree species, with 

several species dependent on the existence of the common ash, its 
conservation is crucial in the face of ash dieback (Mitchell et al., 2017, 
Hultberg et al., 2020). Additionally to the high ecological impact, the 
common ash is also an important economic tree species, as it is also 
valued for its high-quality timber (Pautasso et al., 2013). However, 
symptoms of ash dieback can also manifest as collar and root rot, 
negatively influencing the stability of the affected trees. Those trees 
present a safety risk for humans (e.g., forest workers or visitors) and 
infrastructure (e.g., traffic roads) (Metzler and Herbstritt, 2014, Enderle 
et al., 2017b, Skovsgaard et al., 2017). The vast majority of ash trees in 
German forest stands has been affected by ash dieback, with only very 
few healthy trees remaining (Fuchs et al., 2024). To assess the damage 
severity and gain an estimate of the health status of ash populations, 
usually each individual tree has to be assessed by a trained expert in the 
field. Rating scales are commonly used to classify trees into classes based 
on their health, taking into account various factors such as foliage 
density or the presence of epicormic shoots (Lenz et al., 2012, Peters 
et al., 2021).

Remote sensing technologies offer advantageous options for forest 
monitoring. Unmanned aerial vehicles (UAVs) equipped with a variety 
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of different sensor systems allow for the rapid assessment of large areas. 
UAVs have been tested in a number of forest applications, e.g., for the 
estimation of tree parameters, species phenotyping, phenology, drought 
stress, fire hazards, nutrient status, insect pests and plant diseases 
(Torresan et al., 2017, Barbedo, 2019, Abd El-Ghany et al., 2020, 
Kleinsmann et al., 2023). Plant stress caused by biotic and abiotic factors 
can be detected using UAV technology (Castro et al., 2021). Sensors such 
as RGB, thermal, as well as multi- and hyperspectral UAV systems pro
vide valuable insights into plant disease status (Neupane and 
Baysal-Gurel, 2021). The foliage of each plant is linked to a specific 
spectral reflectance, and the analysis thereof gives indications on the 
plant’s biochemical components and overall health. Vegetation indices 
(VIs), calculated by formulas that commonly incorporate multiple 
wavelengths are often employed to analyse the spectral reflectance 
(Huete, 2012).

Inexpensive RGB sensors can provide information on plant height 
and crown diameter (Barbosa et al., 2021), biomass (Bendig et al., 
2015), phenology (Park et al., 2019), canopy area (Starý et al. 2020) or 
forage yield (Lussem et al., 2018). Especially in the context of plant 
diseases, VIs based on RGB data have been proven to be a valuable tool 
for the identification and characterization of damage caused by plant 
diseases. Diseases can cause subtle changes in leaf colour, texture, and 
brightness, making RGB VIs effective for identifying diseases early, even 
before symptoms become visually severe. For example, a significant 
relationship between different RGB VIs and leaf rust severity was 
documented for wheat (Triticum aestivum L.) affected by the fungus 
Puccinia triticina (Bhandari et al., 2020). Similarly investigations on 
diseased citrus trees also proved a connection between RGB VIs and 
health status (Garza et al., 2020). Using RGB VIs, it was also possible to 
detect disease severity in rice (Oryza spp.) caused by narrow leaf spot 
(Cai et al., 2018).

With more specific wavelengths, also extending to the red-edge and 
near-infrared range, multispectral sensors offer a wide range of addi
tional information to the visible light sensors. Multispectral UAV data 
are widely used in various applications such as precision farming 
(Candiago et al., 2015) and can also effectively identify and monitor 
physiological stress in trees (Dash et al., 2017). Healthy and diseased 
trees often display distinct spectral signatures, influenced by differences 
in pigment composition and structural properties (Mahlein et al., 2013). 
Numerous multispectral VIs exist, each targeting specific wavelengths 
with a focus on characteristics such as biomass, greenness, or vegetation 
status (Xue and Su, 2017). In the context of plant diseases, multispectral 
data have been shown to be successful in identifying diseases. UAV 
multispectral data in combination with VIs were used to detect grape
vine (Vitis vinifera L.) disease (Albetis et al., 2017), monitor sugarcane 
white leaf disease symptoms (Sanseechan et al., 2019) and detect ba
nana (Musa spp.) plant diseases (Ye et al., 2020, Choosumrong et al., 
2023).

Thermal sensors, which capture the surface temperature including 
those of plants, offer unique possibilities for detecting plant diseases and 
the overall health status of plants (Hashim et al., 2020). Disease induced 
stress can lead to the closure of leaf stomata, reducing the transpiration 
rate and resulting in higher leaf temperatures. Increased plant surface 
temperatures were often observed using thermal imaging techniques 
even before visible symptoms were documented (Chaerle et al., 1999, 
Jafari et al., 2017, Ortiz-Bustos et al., 2017). For instance, thermal im
aging successfully identified diseases in banana plants (Anasta et al., 
2021), and significant differences in leaf surface temperature were 
observed in oilseed rape (Brassica napus) infected with fungal species of 
the genus Alternaria (Baranowski et al., 2015).

In the context of plant diseases, thermal imaging has mostly been 
carried out under controlled indoor conditions, since thermal systems 
can be easily influenced by outdoor conditions, such as changing solar 
conditions or wind (Hashim et al., 2020). Nevertheless, UAVs equipped 
with thermal cameras have also proven to be valuable tools to identify 
plant disease status. Smigaj et al. (2015) investigated the use of a 

UAV-operated thermal camera to monitor the canopy temperature of 
diseased trees and were able to document a significant positive corre
lation between tree canopy temperature and disease status.

While the use of UAVs in forests or plantations to detect plant dis
eases is widespread (Holzwarth et al., 2023), few studies using remote 
sensing technologies have focused on ash tree health: The impact of the 
emerald ash borer (Agrilus planipennis), a major insect pest additionally 
threatening ash populations, on ash tree health has been assessed using 
hyperspectral data (Pontius et al., 2008) and multispectral WorldView-2 
satellite data (Murfitt et al., 2016). Both data enabled an estimation of 
the health status of the affected ash trees. Waser et al. (2014) also used 
WorldView-2 data and calculated multispectral VIs for classifying four 
different levels of damage caused by ash dieback. Hyperspectral data 
facilitated the identification of individual ash trees affected by ash 
dieback (Chan et al., 2021, Polk et al., 2022). Further, Kampen et al. 
(2019) demonstrated the potential of UAV-based multispectral data to 
assess ash dieback severity.

However, none of the studies integrated thermal sensors or are partly 
only based on single seasons and years. Moreover, the results of the few 
studies focusing on the damage caused by ash dieback reported diffi
culties in detecting the damage severity and complex workflows make it 
difficult to implement these in practice across the board.

Therefore, this study investigates the potential of RGB, multispectral 
and thermal UAV surveys to determine the extent of damage to Fraxinus 
excelsior L. affected by ash dieback in two German ash seed orchards. We 
hypothesize that vegetation indices values derived from UAV surveys 
vary based on infection status. Additionally, the use of thresholds may 
effectively differentiate between varying degrees of damage. Multiple 
UAV surveys spread over the course of two years (2022–2023) provide 
extensive data at different times of the vegetation period. Emphasis is 
placed on the effectiveness of the three different camera systems. 
Practical applications for forest practitioners are a key focus of this 
study, since the fast and straightforward use of UAV systems combined 
with an easy-to-follow workflow can enable a quick estimate of the 
disease status of ash populations.

2. Materials and methods

2.1. Study sites

This study was conducted at two study sites (Fig. 1), located in the 
south of Germany in the federal state of Baden-Wuerttemberg. Both 
study sites have previously been included in research on ash dieback 
(Enderle et al., 2015, Buchner et al., 2022, Buchner et al., 2024, Eisen 
et al., 2024), thus detailed information on the health status of the 
planted individuals already exists.

The ash seed orchard Emmendingen (48◦6′38.50"N, 7◦52’20.49"E, 
209 m NHN) is located approx. 15 km north of the city Freiburg. The 
plantation has a size of 2.7 ha and was established in 1995. Originally, 
228 ash trees were planted in a grid of 10 m x 10 m. Even though there 
were no thinning measures, 142 trees had to be removed due to ash 
dieback, with only 86 ash trees consisting of 32 different genotypes 
remaining.

The seed orchard Schorndorf (48◦46’35.59’’N, 9◦25’31.00’’E, 
420 m NHN) is located east of the state capital Stuttgart in Baden- 
Wuerttemberg. The plantation was established in 1992 with a spacing 
of 7 m x 7 m and has an area of approx. 2.27 ha. 416 ash trees were 
originally planted, but since then, due to thinning measures and the 
effect of ash dieback, 296 of the ash trees were removed and only 120 
living trees, consisting of 30 different genotypes remained on the 
orchard.

2.2. Methods

Fig. 2 provides an overview of the applied workflow of the UAV 
surveys, the respective post-processing of the data and the workflow for 
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Fig. 1. Study sites Emmendingen (a) and Schorndorf (b) located in the federal state of Baden-Wuerttemberg (light green) in Germany (green), Source: Esri Base Map.

Fig. 2. Methodological framework of the field investigations, post-processing of the data and the vegetation index thresholding.
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obtaining and analysing vegetation indices to index thresholding. In 
brief, the multisensorial vegetation indices were calculated for each tree 
and compared with field-based vitality assessments to evaluate the 
index’s effectiveness in distinguishing different levels of damage. Dif
ferences across vitality classes were tested for statistical significance, 
using appropriate statistical methods based on data distribution and 
variance. This approach was used to identify suitable indices for 
assessing damage severity. A key advancement of this study is repre
sented by the calculation of thresholds that can be universally used in 
assessing the ash tree’s health based on remotely sensed data following 
this workflow. The individual work steps are explained in more detail in 
the following.

2.2.1. Assessment of vitality
Each of the ash trees on both ash seed orchards was assessed 

regarding their vitality, by using a standardized vitality scoring systems 
developed by Peters et al. (2021). The ash trees were classified into six 
categories, ranging from class 0, consisting of healthy trees, to mildly 
damaged trees (class 1 and 2), severely damaged trees (class 3 and 4) 
and lastly to dead trees (class 5). Each class is characterised by different 
degrees of thinning of the crown, leaf loss, dead shoots and branches, 
and the presence of epicormic shoots. The vitality assessments were 
conducted at both orchards in late July of 2022 and 2023.

2.2.2. UAV surveys

2.2.2.1. Image acquisition. Between spring and autumn in 2022 and 
2023, two to four UAV aerial surveys were conducted at each study site 
(Table 1). Two UAV systems were employed: the DJI Mavic 2 Enterprise 
Advanced (Mavic 2 EA) and the DJI Mavic 3 Multispectral (Mavic 3 M). 
The Mavic 2 EA is equipped with a 48 MP RGB camera and a thermal 
sensor, capturing both RGB and thermal images simultaneously. The 
Mavic 3 M, on the other hand, features a 20 MP RGB camera and four 5 
MP multispectral sensors, which record multispectral and RGB images 
concurrently. The multispectral sensors cover the near-infrared (860 nm 
± 26 nm), red edge (730 nm ± 16 nm), red (650 nm ± 16 nm), and 
green (560 nm ± 16 nm) wavelengths. An integrated sun sensor mea
sures solar radiation, enabling light compensation during image post- 
processing which enhances the accuracy and consistency of data over 
time (DJI, 2022).

All surveys were taken at a flight height of 80 m above the ground, 
with side and front overlaps of 85 % and a flight speed of 3 m/s for the 
Mavic 2 EA and 4 m/s for the Mavic 3 M. A ground sampling distance of 
2.22 cm/pixel was achieved for RGB and 10.48 cm/pixel for thermal 
images taken by the Mavic 2 EA and 2.77 cm/pixel for the multispectral 
images of the Mavic 3 M.

Pre-planned flight plans were generated using the UAVs’ software to 
ensure comprehensive coverage of the entire plantation sites. Due to the 
size of the plantations and the UAVs’ battery limitations, each survey 
was divided into two flight missions at the Schorndorf seed orchard and 
three at the Emmendingen seed orchard. These consecutive missions 
were conducted back-to-back to minimize any changes in environmental 
conditions between flights. All surveys were carried out on sunny, cloud- 
free days with minimal wind to ensure optimal image quality and 
consistency.

The images were georeferenced using ground control points (GCPs) 

that were represented by red sheets with reflecting panels. The co
ordinates of the GCPs were recorded using the surveying system Stonex 
S9III (STONEX® Srl, Paderno Dugnano, Italy). The Mavic 3 M includes 
an RTK module, ensuring positioning with centimetre precision, and no 
GCPs were used for those flights.

2.2.2.2. Image processing of multispectral and RGB data. RGB and mul
tispectral images captured by the UAV systems were processed using 
Agisoft Metashape Professional (version 1.8.1). After aligning the im
ported images, a point cloud was generated, followed by the construc
tion of an orthophoto. For the multispectral images, data from the sun 
sensor were used for calibration. Georeferencing was achieved with 
recorded GCPs and, in the case of the Mavic 3 M, supplemented by 
recorded RTK data.

Subsequently, the orthophotos were imported into ArcGIS Pro 
(version 2.8.3) and the individual tree crowns were manually delin
eated. A polygon was created to represent the shape of each tree crown, 
capturing only leaf mass. Although several methods for automatic single 
tree crown segmentation exist (Dalponte et al., 2015, Panagiotidis et al., 
2017, Mohan et al., 2017, Qiu et al., 2020, Miraki et al., 2021), none 
achieved the necessary accuracy for this study. Given the generous 
spacing of ash trees in both orchards, manual segmentation of the 
crowns was feasible. Since ash dieback causes leaf loss and crown 
thinning, special care was taken to segment only those areas of the 
crown that still contained leaves. This approach minimized the influence 
of extraneous pixels, particularly ground pixels. Some trees were 
excluded from further analyses due to crown blurring caused by 
movement of the tree crowns during the UAV survey.

2.2.2.3. Vegetation indices and thresholding. RGB band values were first 
normalized, as described in Eqs. 1 – 3, to reduce the effects of illumi
nation (Torres-Sánchez et al., 2014, Zhang et al., 2019, Suh et al., 2020, 
Barbosa et al., 2021) using the raster calculator in ArcGIS Pro. 

r =
R

R + G + B
(1) 

g =
G

R + G + B
(2) 

b =
B

R + G + B
(3) 

Ten RGB and ten multispectral VIs were selected, each in the context 
of plant health. The respective VIs and their definitions are listed in 
Table 2.

Using the raster calculator in ArcGIS Pro, the individual bands of the 
generated orthophotos were used to calculate the VIs. The zonal statis
tics tool was then applied to calculate the mean VI value per tree canopy 
using the segmented tree crown polygons.

The mean vegetation index value for each tree was compared with 
the field-based vitality assessments to evaluate each index’s capability to 
distinguish between varying levels of ash dieback damage. Statistical 
differences among the four vitality classes (1− 4) were formally assessed 
using ANOVA. In these models, vegetation index values represented the 
dependent variables, while the field-assessed vitality class served as the 
independent categorical factor. Assumptions underlying ANOVA, 
namely the normality of residuals and homogeneity of variances, were 

Table 1 
Months in which the aerial surveys were conducted in 2022 and 2023 for the two seed orchards Emmendingen and Schorndorf and the used UAVs: Mavic 2 EA (M2EA), 
Mavic 3 M (M3M).

2022 2023

Seed orchard May June Juli Oct. May June July Oct.

Emmendingen M2EA ​ M2EA M2EA ​ M2EA, M3M M3M M2EA, M3M
Schorndorf ​ M2EA ​ M2EA M2EA M2EA, M3M M3M M2EA, M3M

L. Buchner et al.                                                                                                                                                                                                                                Forest Ecology and Management 585 (2025) 122660 

4 



verified by visually inspecting residual distribution plots and performing 
Levene’s test, respectively. If these assumptions were violated (non- 
normal residuals or unequal variances), the non-parametric Kruskal- 
Wallis test was applied instead. When significant differences were 
detected, post-hoc tests were applied to determine pairwise differences 
between vitality classes. For ANOVA, pairwise t-tests with Holm’s 
correction were conducted. For Kruskal-Wallis, pairwise Wilcoxon rank- 
sum tests with Bonferroni correction were used. This approach enabled 
the identification of vegetation indices suitable for assessing ash dieback 
damage.

To establish a threshold separating the value range of a vegetation 
index for mild and severe damage the datasets of both seed orchards 
were merged to generate universal thresholds. Extreme outlier values 
were adjusted by limiting all values higher than the 95th percentile to 
the 95th percentile value, and all values lower than the 5th percentile to 
the 5th percentile value. Vegetation indices were then normalized using 
Eq. 4, scaling all indices to a range of 0–1. To simplify the vitality data, 
classes 1 and 2 were combined to represent mild damage, while classes 3 

and 4 were combined to represent severe damage. Due to the extended 
spread of ash dieback in Germany (Fuchs et al., 2024), no healthy trees 
(class 0) were found on the two study sites. Since the focus of our study 
lies on the analysis of leaf mass, dead trees (class 5) were excluded from 
the analysis. To determine whether the index values significantly 
differentiate between mild and severe damage for the three best RGB 
and multispectral indices, we assessed the normality of the data distri
bution using the Shapiro-Wilk test. As for none of the indices the 
assumption of normality was met, the Mann-Whitney U test was applied. 

VI_normalized =
VI − VImin

VImax − VImin
(4) 

A density plot was generated for each vegetation index in each UAV 
survey to display the index value range for the two damage classes, mild 
and severe. The intersection point of these distributions was identified as 
the optimal threshold for distinguishing between the two damage clas
ses. Since each vegetation index was calculated for every UAV survey, an 
average threshold value was then determined across all surveys. This 
established average threshold was then re-evaluated across all surveys. 
Each threshold was verified by 10-fold cross-validation, where the 
original datasets were resampled into 10 sub-datasets. Overall accuracy 
(OA) (Eq. 6) and F1 score (Eqs. 6–8) were calculated to assess threshold 
performance. True positives (TP) and true negatives (TN) represented 
correct predictions that aligned with actual observations, while false 
positives (FP) and false negatives (FN) indicated incorrect predictions. 
OA represents the percentage of correct predictions. Precision measures 
the accuracy of positive predictions, while recall evaluates the ability to 
identify all relevant positive instances. As a measure of the optimal 
balance between precision and recall, the F1 score highlights the 
correctly identified TP and TN (Fawcett, 2006). 

OA =
TP + TN

TP + FP + FN + TN
(5) 

Precision =
TP

TP + FP
(6) 

Recall =
TP

TP + FN
(7) 

F1Score = 2 ∗
Precision ∗ Recall
Precision + Recall

(8) 

Additionally, due to the imbalance between the number of cases in 
the classes mild and severe, i.e., a higher prevalence of mildly damaged 
trees, the Matthews Correlation Coefficient (MCC; Eq. 9), was calcu
lated. The MCC considers the balance of TP, TN, FP, and FN, offering a 
robust and unbiased evaluation metric, particularly in scenarios with 
class imbalance. MCC values can range from − 1–1, with higher values 
indicating better model performance (Chicco and Jurman, 2020, Foody, 
2023). 

MCC =
TP ∗ TN − FP ∗ FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

√ (9) 

All analyses were performed in R (version 4.1.1) using R Studio 
(version 2021.09.0).

2.2.2.4. Combination of indices. To improve damage estimation, we 
tested combinations of multiple VIs using binary logistic regression with 
10-fold cross-validation. This method allows us to predict whether an 
outcome will be present or absent based on several predictor variables. 
The dependent variable is either 0 (mild damage) or 1 (severe damage). 
The model estimates the influence of each independent variable, in this 
case the various VIs, on the outcome, the disease severity. The depen
dent variable (P), the probability of the disease severity, was calculated 
according to Eq. 10 (Lee and Pradhan, 2007, Ye et al., 2020). 

Table 2 
Vegetation indices (VIs) selected for this study. For each index, the equation and 
exemplary references, where the VI was applied in the context of plant health, 
are displayed.

Vegetation index Equation References

RGB Green-Red 
Vegetation Index

GRVI =
g − r
g + r

(Albetis et al. 2017, 
Albetis et al. 2019)

Excess Green Index ExG = 2 ∗ g −

r − b
(Cai et al. 2018)

Excess Red Index ExR = 1.4 ∗ r −

g
(Cai et al. 2018)

Excess Green-Red ExGR = ExG −

ExR
(Cai et al. 2018)

Green Leaf Index GLI =

2 ∗ g − r − b
2 ∗ g + r + b

(Bhandari et al. 2020)

Red Green Blue 
Vegetation Index

RGBVI =

g2 − b ∗ r
g2 + b ∗ r

(Bendig et al. 2015)

Red Green Ratio 
Index

RGRI =
r
g

(Albetis et al. 2017, 
Albetis et al. 2019, 
Cai et al. 2018)

Green Blue Ratio 
Index

GBRI =
b
g

(Vilela et al. 2024)

Triangular Greenness 
Index

TGI = g −

0.39 ∗ r −

0.61 ∗ b

(Garza et al. 2020)

Greenness Index GI =
g
r

(Sanseechan et al. 
2019)

Multispectral Normalized 
Difference Vegetation 
Index

NDVI =

NIR − R
NIR + R

(Guo et al. 2021, Wu 
et al. 2023)

Red Edge Normalized 
Difference Vegetation 
Index

NDRE =

NIR − RE
NIR + RE

(Chang et al. 2020, 
Albetis et al. 2019, 
Wu et al. 2023)

Green Normalized 
Difference Vegetation 
Index

GNDVI =

NIR − G
NIR + G

(Sanseechan et al. 
2019)

Green Chlorophyll 
Index

Clg =
NIR
G

− 1 (Ye et al. 2020)

Red Edge Chlorophyll 
Index

Clre =
NIR
RE

− 1 (Albetis et al. 2019, 
Ye et al. 2020)

Chlorophyll 
Vegetation Index

CVI =
NIR
G

∗
R
G

(Wu et al. 2023)

Difference Vegetation 
Index

DVI = NIR − R (Steddom et al. 2005, 
Jie et al. 2015)

Red Edge Green 
Index

REGI =
RE − G
RE + G

(Albetis et al. 2019)

Anthocyanin 
Reflectance Index

ARI =
1
G
−

1
RE

(Ashourloo et al. 
2014, Abdulridha 
et al. 2019)

Plant Senescence 
reflectance Index

PSRI =
R − G
NIR

(Ashourloo et al. 
2014, Guo et al. 2021, 
Wu et al. 2023)
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P =
1

1 + e− y (10) 

The variable y is a linear combination calculated according to Eq. 11
(Lee and Pradhan, 2007, Ye et al., 2020) 

y = b0 + b1x1 + b2x2 + b3x3 + bnxn (11) 

Here, b0 is the intercept, b1 are the slope coefficients, and x1 repre
sent the independent variables. In this study, this equation was applied 
to model the probability of the disease severity based on the thresholds 
of multiple, combined VIs. The glm() function of the R package “car” was 
utilized to fit the logistic regression models.

For both RGB and multispectral data, the three indices, which were 
most successful in discriminating the damage severity with thresholding 
were selected and combined in the logistic regression model to deter
mine the efficiency of the calculated thresholds in combination with 
other indices.

A correlation analysis was conducted between these six indices to 
assess their relationships. To avoid multicollinearity, which can lead to 
unstable regression models, only indices with a low correlation were 
selected from both the RGB and multispectral data. Multicollinearity 
was tested for applying variance inflation factor (VIF) analysis, using the 
function vif() in the “car” package in R. The smallest VIF value is 1, 
values greater than 5 indicate multicollinearity. VIF was calculated 
using Eq. 12 where R2 represents the coefficient of determination, which 
measures how well one independent variable can be predicted by all the 
other independent variables in the model. If the R² value is close to 1, the 
variable is highly related to the others (collinearity), resulting in a high 
VIF. In such cases, the variable does not provide much unique infor
mation to the model (James et al., 2023). 

VIF =
1

1 − R2 (12) 

Binary logistic regression analysis was used to determine whether 
combining RGB and multispectral data improves the accuracy of damage 
severity estimation.

The results of the logistic regression analysis were again assessed 
with a 10-fold cross-validation, focusing on the statistical measures of 
OA, F1 score and MCC.

2.2.2.5. Processing of the thermal images. Since the thermal images 
captured by the Mavic 2 EA were initially saved as 8-bit JPEG-files, a 
pre-processing of the images was necessary, converting them into 16-bit 
TIFF-files. An adapted R script, based on the script developed by Kat
tenborn (2023), was used for facilitating this image conversion. This 
ensured a consistent scale across all images, where each specific tem
perature value corresponded to the same digital number, enabling the 
application of structure-from-motion processing. The script is based on 
the DJI Thermal SDK (version 1.4) and incorporated factors such as 
emissivity, relative humidity, and camera-target-distance.

Relative humidity was measured on both study sites using a relative 
humidity logger (HOBO U23–001, Onset, Bourne, MA, USA) recording 
data every ten minutes. We used the mean relative humidity during the 
flight time and an emissivity value of 0.96 was applied for all images, 
based on the estimated average emissivity value for plants determined 
by Harrap et al. (2018).

The converted thermal images were validated randomly using the 
DJI Thermal Analysis Tool (version 2.1.8). Afterwards the converted 
images were stitched together to an orthomosaic as described for the 
RGB and multispectral images.

In the final thermal orthophoto, individual ash tree crowns were 
segmented manually in ArcGIS Pro. Using the tool “zonal statistics”, the 
mean temperature per segmented tree crown was calculated. To deter
mine statistically significant differences in mean crown temperatures 
across vitality classes, we followed the statistical procedure described 
above (chapter 2.2.2.3).

3. Results

3.1. Vegetation indices

3.1.1. Multispectral indices
The comparison of mean values related to the VIs and the respective 

vitality classes revealed varying outcomes depending on the specific VI 
and the seasonal timing of the UAV surveys. For all indices, severe 
damage was associated by decreased index values. At the Emmendingen 
seed orchard, all ten VIs were able to significantly discriminate between 
the four vitality classes in the summer, with p values < 0.001 for both 
surveys in June and July (Table 3). At the Schorndorf seed orchard, all 
indices except the CVI showed significant differentiation in June, only 
six out of ten indices were significant in July. The VIs generated from the 
autumn surveys performed worse than those from the summer. Only 
seven VIs for Emmendingen and five for Schorndorf showed statistically 
significant differences between the classes. Overall, the multispectral 
VIs NDVI, GNDVI, Clg, REGI and DVI were able to discriminate between 
the vitality classes for all surveys in both summer and autumn. The post- 
hoc tests revealed that the majority of indices presented significant 
differences between class 1 and 3 and class 1 and 4, whereas typically 
only a few significant differences between class 1 and 2 and class 3 and 4 
could be detected. Due to the extensive size of the post-hoc results, they 
are not presented here.

For each VI, mean thresholds were calculated across all surveys to 
distinguish between mild damage (vitality classes 1 and 2) and severe 
damage (vitality classes 3 and 4). For example, NDVI values above the 
calculated summer threshold of 0.57 were classified as mildly damaged, 
whereas NDVI values below this threshold represented severely 
damaged ash trees. Validation of these mean thresholds applying 10-fold 
cross-validation revealed varying classification success rates (Table 4). 
Among the thresholds derived from both summer and autumn surveys, 
the DVI and GNDVI achieved the highest accuracy and F1 scores, with 
classification success rates of 71.4 % and 71.5 %, respectively. When 
considering only the summer surveys, the highest classification success 
was again observed for DVI and GNDVI, with an OA of 74.9 % and 
74.4 %, respectively. Although the REGI ranked third for both summer 
and autumn data with an accuracy of 70.8 %, the NDVI demonstrated a 
higher OA of 73.9 % when evaluated solely with summer data. Espe
cially for the summer surveys, the combination of a relatively high OA, a 
high F1 score, and a moderate MCC suggests that the thresholds perform 
reasonably well overall. Due to the class imbalance, the overall accuracy 
(OA) is influenced by the larger class of mildly damaged trees. The high 
F1 score suggests balanced classification performance across both 
damage classes. Additionally, the MCC exceeds 0.4, indicating moderate 
agreement beyond chance, quantifying the effectiveness of the thresh
olds in distinguishing between mildly and severely damaged trees.

Boxplots illustrating vegetation indices (NDVI, DVI, and GNDVI) 
from all four summer surveys conducted at the Emmendingen and 

Table 3 
P-values for the statistical difference between the four vitality classes for the ten 
selected multispectral VIs at the Emmendingen (E) and Schorndorf (S) seed or
chards in 2023; Definition of VIs see Table 2. Bold values: significant at the 5 % 
level.

E June 
23

E July 23 E Oct 23 S June 23 S July 23 S Oct 
23

NDVI < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006
NDRE < 0.001 < 0.001 0.009 < 0.001 0.057 0.068
GNDVI < 0.001 < 0.001 0.010 < 0.001 0.001 0.019
Clg < 0.001 < 0.001 0.019 < 0.001 0.001 0.019
Clre < 0.001 < 0.001 0.009 < 0.001 0.052 0.070
CVI < 0.001 < 0.001 0.092 0.181 0.968 0.915
REGI < 0.001 < 0.001 0.015 < 0.001 < 0.001 0.018
PSRI < 0.001 < 0.001 0.148 < 0.001 0.757 0.819
DVI < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001
ARI < 0.001 < 0.001 0.068 < 0.001 0.220 0.396
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Schorndorf seed orchards (Fig. 3) show a clear significant difference in 
median positions (solid horizontal lines within the boxes), indicating 
distinct vegetation responses between mildly and severely affected 
ashes. However, varying degrees of overlap in the interquartile ranges 
(box height) were evident among indices. The dashed line in Fig. 3
represents the calculated threshold separating mildly and severely 
damaged trees.

3.1.2. RGB indices
The ten selected RGB indices exhibited varying degrees of suitability 

for differentiating among the vitality classes. For the RGRI and the ExR 
indices, severe damage is indicated by higher values, while for all other 
RGB indices, more severe damage is linked to decreased index values. 
While some indices demonstrated statistically significant differences 
among the four vitality classes, only the GLI index proved significance 
across all surveys conducted from May to October at both study sites 
(Table 5). The ExG and RGBVI indices also widely displayed statistically 
significant differences in vitality classes for most surveys, except for the 
May 2022 survey in Emmendingen. Although the GRVI and GI indices 
were not significantly different during the autumn 2022 surveys, they 
achieved statistical significance in October 2023. The autumn surveys 
for both years indicated a reduced ability of RGB VIs to distinguish be
tween vitality classes. However, in Schorndorf in 2023, most indices 
achieved statistical significance. As for the multispectral indices, the 
post-hoc tests (not shown) demonstrated mostly significant differences 
between class 1 and 3 and class 1 and 4, and only in some cases sig
nificant differences be-tween class 1 and 2 and class 3 and 4. Post-hoc 
test results supported the classification of classes 1 and 2 as mild dam
age and classes 3 and 4 as severe damage, making this grouping suitable 
for further threshold analysis.

Thresholds generated for the RGB-derived VIs varied between the 
combined summer and autumn surveys and the summer-only surveys. 
Validation through 10-fold cross-validation indicated that the ExG, GLI, 

and RGRI indices achieved the highest accuracy and F1 scores for the 
combined summer/autumn surveys, with ExG attaining the highest ac
curacy at 71.0 %. In contrast, slightly higher accuracies were recorded 
for the summer-only surveys, where the GRVI, ExG, and RGRI were most 
effective in distinguishing between mild and severe damage due to ash 
dieback. The highest OAs were observed during the summer surveys, 
with the GRVI achieving 73.0 %, followed by the RGRI at 72.5 % and the 
ExG at 72.2 %. As with the multispectral indices, a relatively high OA 
was generally associated with a high F1 score and a moderate MCC for 
the three most successful indices. However, for the RGB indices, the 
MCC values only exceeded the threshold for moderate agreement of 0.4 
for the GRVI in the summer; all other indices presented lower MCC 
values (Table 6).

Although a clear statistically significant shift in the median is visible 
(Fig. 4), the determined thresholds (dashed lines) cannot entirely 
separate the two damage classes due to overlapping interquartile ranges. 
For GRVI and ExG, more severe damage leads to decreased index values, 
whereas for RGRI, higher values indicated severe damage.

3.1.3. Combination of indices
The results of the binary logistic regression analysis for three com

binations of VIs are presented in Table 7. All three combinations, which 
include the most appropriate VIs for thresholding, yielded very similar 
outcomes, with accuracies ranging from 76.7 % to 77.2 %, F1 scores 
between 0.83 and 0.84, and the MCC between 0.43 and 0.48. The 
highest classification success was achieved using the combination of two 
multispectral indices (NDVI and DVI) and one RGB index (ExG), which 
also exhibited low VIF values. This combination is the only pairing of 
RGB and multispectral indices with low VIF values; all other combina
tions exhibited multicollinearity. For instance, the combination of the 
three RGB indices – GRVI, ExG, and REGI – also showed high VIF values 
exceeding the threshold of 10 for both GRVI and RGRI, indicating 
multicollinearity. Conversely, both the multispectral index combination 

Table 4 
Established thresholds, overall accuracy (OA), F1 score (F1) and Matthews correlation coefficient (MCC) for the ten selected multispectral VIs, considering combined 
summer and autumn surveys as well as summer surveys only.

Summer and autumn surveys Summer surveys

Threshold OA F1 MCC Threshold OA F1 MCC

NDVI 0.58 70.2 0.76 0.38 0.57 73.9 0.80 0.44
DVI 0.50 71.4 0.78 0.38 0.52 74.9 0.80 0.46
NDRE 0.48 64.3 0.70 0.29 0.45 68.8 0.75 0.35
Clg 0.36 70.5 0.77 0.37 0.38 72.1 0.79 0.38
Clre 0.46 63.5 0.69 0.28 0.43 68.3 0.74 0.34
GNDVI 0.44 71.5 0.78 0.37 0.46 74.5 0.81 0.43
CVI 0.29 63.4 0.72 0.17 0.31 66.7 0.75 0.26
REGI 0.45 70.8 0.78 0.36 0.47 72.4 0.79 0.38
ARI 0.33 66.3 0.74 0.26 0.37 68.3 0.75 0.32
PSRI 0.50 30.6 0.67 0.21 0.49 63.4 0.71 0.22

Fig. 3. Boxplots of all four summer surveys for the merged dataset of the Emmendingen and Schorndorf seed orchards, displaying the normalized vegetation indices 
NDVI, DVI and GNDVI for the trees.
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and the combined RGB and multispectral indices displayed low VIF 
values, suggesting the absence of multicollinearity.

The correlations among the six selected VIs (Fig. 5) partially revealed 
strong relationships not only within the RGB and multispectral datasets 
but also across them. These high correlations limited the improvement 
in damage severity identification, resulting in a 2 % higher OA 
compared to using individual indices alone.

3.2. Thermal images

The analysis of the thermal images in relation to the different vitality 
classes revealed different distributions of crown temperatures for the 
four vitality classes. Statistically significant differences were recorded in 
only two of the ten UAV surveys (Fig. 6). Specifically, in June 
(p < 0.001) and in October (p = 0.021) 2023 at the Schorndorf seed 
orchard, a significant increase in crown temperature was observed in 
more severely affected ash trees. The post-hoc test for the June survey 

revealed significant differences between class 1 and class 4 (p = 0.006), 
class 2 and class 4 (p < 0.001), and class 3 and class 4 (p = 0.025). In the 
October survey, a statistically significant difference was observed only 
between class 1 and class 4 (p = 0.031). Although a similar trend was 
visually apparent in some other UAV surveys, it did not reach statistical 
significance in those cases. An exception was the May 2022 survey in 
Emmendingen, which exhibited an opposing pattern with a temperature 
decrease of over 2 ◦C between the medians of vitality classes 1–4.

4. Discussion

In this study, three different camera systems - RGB, thermal and 
multispectral - were tested for their suitability to differentiate between 
varying degrees of damage caused by ash dieback.

Due to the rapid progression of ash dieback, no healthy tree could be 
included in this study. Consequently, the analysis focused solely on trees 
exhibiting varying degrees of damage. However, it is important to note 

Table 5 
P-values for the statistical differences between the four vitality classes for the ten selected RGB VIs at the Emmendingen (E) and Schorndorf (S) seed orchards in 2022 
and 2023. Bold values: significant at the 5 % level.

E May 22 E July 22 E Okt. 22 S June 22 S Okt. 22 E June 23 E July 23 E Okt. 23 S June 23 S July 23 S Okt. 23

GRVI < 0.001 < 0.001 0.080 < 0.001 0.975 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.005
ExG 0.099 < 0.001 0.001 < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ExR 0.052 < 0.001 0.251 0.444 < 0.001 < 0.001 < 0.001 0.016 0.009 0.053 0.088
ExGR 0.004 < 0.001 0.379 0.092 0.060 < 0.001 < 0.001 0.002 < 0.001 0.001 0.035
GLI 0.034 < 0.001 0.001 < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
RGBVI 0.130 0.012 < 0.001 < 0.001 0.001 0.010 0.037 0.003 < 0.001 < 0.001 < 0.001
GI < 0.001 < 0.001 0.080 < 0.001 0.978 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.003
RGRI < 0.001 < 0.001 0.073 < 0.001 0.976 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.005
GBRI 0.568 0.258 0.003 < 0.001 < 0.001 0.751 0.362 0.04 < 0.001 < 0.001 < 0.001
TGI 0.199 0.026 0.002 < 0.001 < 0.001 0.034 0.017 < 0.001 < 0.001 < 0.001 < 0.001

Table 6 
Established thresholds, overall accuracy (OA), F1 score (F1) and Matthews correlation coefficient (MCC) for the ten selected RGB VIs for the combined summer and 
autumn surveys and the summer-only surveys.

Summer and autumn surveys Summer surveys

Threshold OA F1 MCC Threshold OA F1 MCC

GRVI 0.42 67.3 0.74 0.34 0.37 73.0 0.80 0.40
ExG 0.45 71.0 0.78 0.36 0.42 72.2 0.80 0.35
ExR 0.61 60.3 0.68 0.18 0.58 63.0 0.69 0.27
ExGR 0.37 63.6 0.71 0.24 0.38 67.6 0.74 0.34
GLI 0.48 70.2 0.77 0.35 0.45 71.5 0.79 0.35
RGBVI 0.48 68.0 0.76 0.29 0.47 67.5 0.75 0.27
RGRI 0.60 69.3 0.76 0.33 0.60 72.5 0.79 0.39
GBRI 0.48 63.2 0.71 0.21 0.47 60.8 0.69 0.18
TGI 0.47 66.5 0.74 0.27 0.46 65.7 0.74 0.25
GI 0.37 65.9 0.72 0.34 0.32 70.8 0.77 0.38

Fig. 4. Boxplots of all seven summer surveys for the merged data of the Emmendingen and Schorndorf seed orchards, displaying the vegetation indices GRVI, ExG 
and RGRI for the trees surveyed in the summer.
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that only a few severely damaged trees (class 4) existed on both study 
sites. We propose that classification performance could improve at sites 
with a higher prevalence of both healthy and severely damaged trees. 
This is because the contrast in spectral reflectance properties between 
the healthiest and most damaged trees is likely to provide clearer dis
tinctions for analysis. Therefore, we suggest that further studies should 
especially focus on trees in class 4 and, if possible, also in class 0.

4.1. RGB and multispectral UAV data

Clear results could be obtained using RGB data for differentiation 
between mild and severe damage due to ash dieback. As outlined below, 

numerous studies have demonstrated similar results, emphasising the 
usability of RGB data in the context of plant diseases especially in 
agricultural crops. A significant relationship between RGB indices and 
winter wheat foliage disease severity has been proven using a low-cost 
UAV equipped with a digital camera (Bhandari et al., 2020). RGB im
ages focusing on citrus trees (Citrus spp.) affected by diseases were able 
to demonstrate lower triangular greenness index (TGI) values for 
diseased trees (Garza et al., 2020). For the detection of narrow brown 
leaf spot severity in rice (Oryza spp.), the ExGR index was the most 
suitable for detecting high levels of disease (Cai et al., 2018). Various 
indices were tested for each case study and the success of each VI to 
differentiate between the damage severity varied greatly. In this study, 
the GRVI, ExG and RGRI were found to be capable of differentiating 
between mild and severe damage with the applied threshold with the 
highest accuracies. RGB VIs can amplify subtle differences in vegetation 
health that may not be visually discernible in raw RGB images, making 
them a valuable tool for in-depth plant health analysis by providing 
quantifiable and standardized metrics of vegetation condition.

The generated multispectral data in combination with various VIs 
and associated thresholds were also successfully applied to differentiate 
between mild and severe damage. Numerous studies utilized multi
spectral indices to identify disease occurrence or severity in plants. For 
citrus trees (Citrus spp.), infected by Citrus greening disease, four VIs 
demonstrated significant higher index values in healthy than in diseased 
trees (Chang et al., 2020). Multispectral indices were also suitable for 
the differentiation between healthy banana plants (Musa spp.) and 
plants affected by banana Fusarium wilt disease (Ye et al., 2020). The 
detection of canker infected citrus trees (Citrus spp.) was possible uti
lizing multispectral VIs (Abdulridha et al., 2019). Although in our study 
all multispectral indices were able to distinguish between mild and 

Table 7 
Logistic regression equations for three different combinations of indices with 
their overall accuracy (OA), F1 score (F1), Matthews correlation coefficient 
(MCC) and the variance inflation factor (VIF).

Data Logistic Regression Equation OA F1 MCC VIF

MS y = 0.9294608–0.3666048 
NDVI 
- 1.386887 DVI - 1.005055 
GNDVI

76.7 % 0.83 0.46 NDVI: 
2.4 
DVI: 1.5 
GNDVI: 
1.9

RGB y = 0.5276535–0.7400043 
GRVI 
- 0.869358 ExG - 0.6269988 
RGRI

76.9 % 0.84 0.43 GRVI: 
14.2 
ExG: 1.3 
RGRI: 
13.8

MS and 
RGB

y = 1.024588–0.613737) 
NDVI 
- 1.44662 DVI - 0.8624887 ExG

77.2 % 0.83 0.48 NDVI: 
1.8  
DVI: 1.5 
ExG: 1.3

Fig. 5. Correlations between the three selected RGB and multispectral indices: ExG, DVI, GNDVI, NDVI, GRVI and RGRI.
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severe damage, the highest accuracies were achieved for the GNDVI, 
NDVI and DVI. While red-edge indices are often highlighted as being 
effective in identifying diseased plants (Chang et al., 2020, Ye et al., 
2020), we found that they did not outperform indices without the 
red-edge band. Instead, the red, green, and NIR bands were particularly 
successful in determining the severity of damage caused by ash dieback.

Autumn UAV surveys for both RGB and multispectral data performed 
worse compared to those conducted in the summer. Overall, the autumn 
indices showed fewer significant differences between the four vitality 
classes than the indices calculated from the summer surveys. When 
factored into the calculated mean threshold, the accuracy of classifying 
the two damage classes was lower than during the summer months only, 
indicating reduced effectiveness. Since the autumn surveys were con
ducted in October, early stages of leaf senescence had likely begun, 
influencing the spectral reflectance of the leaves and reducing the 
observable effects of ash dieback. Despite this, VIs from October surveys 
effectively distinguished between mild and severe damage, confirming 
that UAV-based assessments are possible throughout the entire vegeta
tion period of the common ash. However, thresholds solely from summer 
surveys were more reliable, making summer the recommended period 
for more accurate and stable assessments.

4.2. Thermal UAV data

The use of a thermal UAV camera in our study proved less effective 
than the RGB and multispectral data in distinguishing crown tempera
tures of ash trees in relation to disease severity. While an expected in
crease in crown temperature with more advanced symptoms of ash 
dieback was observed in seven out of ten conducted surveys, the dif
ference between the damage classes were only seldom statistically sig
nificant. In contrast, numerous studies, focusing on agricultural crops, 
have demonstrated clearer results when applying thermal cameras for 
plant disease detection. For tomato (Solanum spp.) plants infected with 
O. neolycopersici, thermal images provided information in regards to the 
identification of diseased plants (Raza et al., 2015). Rose plants (Rosa 
hybrida L.), affected by powdery mildew (Podosphaera pannosa var. 
rosae) and gray mold (Botrytis cinerea) also presented clear changes in 
their thermal appearance (Jafari et al., 2017). With an accuracy of over 
90 %, disease-induced spots in banana (Musa spp.) leaves were able to 

be identified using a thermal camera (Anasta et al., 2021). A significant 
leaf surface temperature increase was observed for avocado (Persea 
americana Mill.) plants infected with white root rot (Granum et al., 
2015) as well as sunflower (Helianthus annuus L.) plants infected with 
Orobanche cumana (Ortiz-Bustos et al., 2017). However, these studies 
primarily focused on ground-based thermal images of individual leaves 
or smaller plants, allowing for precise identification of affected areas. In 
contrast, our study employed UAV-based thermal imaging at a flight 
height of 80 m above the ground, with an image resolution of 
10.48 cm/pixel. This approach may have limited the ability to detect 
small areas of increased temperature associated with ash dieback and 
might not be represented proportionately in the final orthophoto. The 
mean temperature per tree crown calculated in this study could there
fore underrepresent leaf areas with increased temperature due to an 
infection with ash dieback and the associated presumed stress-induced 
closure of stomata.

For detecting Xylella fastidiosa infections in olive (Olea europaea) 
orchards using remote sensing techniques, the integration of thermal 
imaging with multispectral data significantly enhanced identification 
accuracy, highlighting the potential of thermal remote sensing data to 
detect plant diseases (Poblete et al., 2020). Smigaj et al. (2015) proved 
that UAV-borne thermal image data can detect temperature differences 
linked to red band needle blight (Dothistroma septosporum) infection 
status at the tree level for pine trees (Pinus sylvestris and Pinus contorta) in 
a forest. Studies investigating leaf temperature changes in 
disease-inoculated plants have documented an initial temperature 
decrease before visible symptoms emerge, followed by a subsequent 
increase as the disease progresses. The pre-symptomatic temperature 
reduction is linked to stomatal opening, while the later rise above 
healthy tissue levels is associated with chlorosis and cell death 
(Lindenthal et al., 2005, Baranowski et al., 2015, Jafari et al., 2017). 
Therefore, contradicting results as found in our study, might hinder a 
clear interpretation of thermal images. In our approach, the mean crown 
temperature includes all leaves within a tree crown, meaning that var
iations in thermal dynamics due to differing infection statuses among 
the leaves cannot be ruled out and may counterbalance each other. The 
thermal sensor of the Mavic 2 EA has been proven to record tempera
tures with a deviation of up to 2 ◦C compared to ground-based tem
perature measurements (Leblanc et al., 2021). Additionally, factors such 

Fig. 6. Boxplots of the crown temperature of the ash trees for the different vitality classes for 2022 and 2023 for both study sites.
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as wind direction and flight speed can influence the accuracy of thermal 
imaging (Malbéteau et al., 2021). Although the captured thermal images 
were calibrated in terms of emissivity, relative humidity and 
camera-target-distance, inaccuracies related to the actual crown tem
peratures cannot be entirely excluded. Further studies would benefit 
from the inclusion of more severely damaged trees as these trees were 
underrepresented at our study sites. We suggest that this group of trees 
can be best delineated from other vitality classes, as demonstrated by 
most surveys in Schorndorf. In Emmendingen, proper conclusions are 
especially lacking due to the low number of ashes in class 4 with very 
severe damage (n < 5). Since the pattern observed in our study suggests 
that crown temperature differences exist, further investigations and a 
continuing monitoring of thermal characteristics in the context of ash 
dieback could be promising. UAV surveys with a lower flight height 
could improve the resolution of the images and are therefore recom
mended for further studies.

4.3. Vegetation index thresholding

The use of fixed threshold, whether to distinguish healthy from 
diseased plants or to differentiate between varying degrees of damage, 
provides a clear and practical method for interpreting VIs. Various 
thresholding techniques in the context of VIs and remote sensing data 
have already been tested in prior studies (Suh et al., 2020). Albetis et al. 
(2017) identified optimal thresholds for various VIs to distinguish 
grapevines (Vitis vinifera L.) affected by Flavescence dorée disease from 
healthy, symptom-free individuals. However, the optimal thresholds 
varied among the different studied cultivars, limiting the reproduc
ibility. Similarly, VI thresholds calculated for Flavescence dorée disease 
and Grapevine Trunk Disease demonstrated the challenge of correctly 
distinguishing between the two diseases and asymptomatic plants 
(Albetis et al., 2019).

In our study, a perfect separation of mild and severe damage due to 
ash dieback using a threshold was difficult to achieve. The highest ac
curacy of 74.9 % was obtained calculating the DVI threshold. However, 
the overlap between mild and severe damage classes likely reflects the 
“fluid” health status of the ash trees, which were categorized into fixed 
classes. The vitality assessments in the field relied on the observer’s 
judgment, and although all evaluations were performed by the same 
trained expert, minor discrepancies may have occurred. The distinction 
between class 2, representing mild damage, and class 3, representing 
severe damage, is often minimal, e.g., for the least healthy trees in class 
2 and the healthiest trees in class 3. Since the use of a threshold is highly 
praxis-oriented, this study focused on a simple, manageable workflow 
for forest practitioners as an alternative to more complex classifying 
methods, an approach also emphasized by Otsu et al. (2019).

The correlation analysis of the three RGB and three multispectral 
indices indicated high correlations between all indices. As a result, 
combining multiple indices – whether RGB, multispectral, or a mix of 
both – did not substantially improve classification accuracy. The most 
promising combination in determining the severity of ash dieback 
damage, with an accuracy of 77.2 %, was achieved combining the two 
multispectral indices NDVI and DVI and the RGB index ExG. However, 
due to the limited number of datasets, the training datasets used to 
calculate the mean thresholds were resampled for validation, which may 
result in slightly higher accuracy scores, as noted by Yadav and Shukla 
(2016).

Few studies have aimed to classify ash dieback severity using remote 
sensing data, and achieving fully accurate classifications remains a 
challenge. Waser et al. (2014) used WorldView-2 satellite data with 19 
VIs to classify four levels of ash health in a German forest site, achieving 
an overall accuracy of 77 %, which is similar to our classification results. 
An analysis using hyperspectral forest data, providing a broader range of 
wavelengths, likewise reached a 77 % accuracy in classifying damage 
severity within a Random Forest model (Chan et al., 2021). Polk et al. 
(2022) identified ash trees infected with Hymenoscyphus fraxineus at a 

forest site without focusing on severity, achieving 71 % accuracy using 
hyperspectral data. In another study, Kampen et al. (2019) used 
UAV-based multispectral data and a Random Forest classifier to identify 
five levels of ash dieback severity at an ash seed orchard, achieving an 
accuracy of 61.7 %. The results of these studies highlight the difficulty of 
correctly separating ash dieback damage classes.

The differentiation of damage severity, however, can be achieved not 
only with hyper- or multispectral data. As our study revealed, a single 
RGB index, such as GRVI, can also be used to determine damage severity 
with an OA of 73 %. While ash seed orchards offer advantages in 
detecting individual ash trees, previous studies have shown that ash 
dieback severity analysis can also be achieved in forest sites (Waser 
et al., 2014, Chan et al., 2021, Polk et al., 2022).

Both RGB and multispectral data effectively assess ash dieback 
severity using VIs and thresholds, though thermal data was less effec
tive. Multispectral data provided slightly higher classification accuracy, 
but RGB data also performed well. While both UAV systems are similar 
in cost and usability, multispectral cameras are generally more expen
sive and complex to operate.

Ash dieback presents an important threat to common ash trees across 
Europe, and largescale health assessments of affected trees have been 
highly time-consuming and labor-intensive. The use of fixed thresholds 
applied to orthophotos generated from UAV surveys offers new, prac
tical opportunities for assessing the health status of Fraxinus excelsior L. 
This method offers a significant time advantage, particularly for large- 
scale assessments, while also enabling the monitoring of otherwise 
inaccessible areas. Beyond health monitoring, this approach also holds 
potential for large-scale phenotyping and other applications. For con
servation purposes, identifying ash trees with only mild damage symp
toms is particularly relevant, as some individuals exhibit greater 
resistance to ash dieback than others (McKinney et al., 2011). Our 
method allows for the detection of trees with mild damage and facili
tates long-term monitoring of their health status, which is crucial for 
further investigation and conservation efforts. Although this study fo
cuses on ash seed orchards with relatively high tree spacing, the outlined 
approach is also applicable to forest stands. However, before applying 
the established VI thresholds, it is essential to identify the individual ash 
trees, e.g. as demonstrated by Waser et al. (2014) and Chan et al. (2021). 
Since our determined thresholds are based on the normalized range of 
VIs, applying them requires following our proposed workflow.

Due to the fluid progression of the state of health, a 100 % accurate 
classification of the damage in accordance with the field assessment is 
likely very difficult to achieve, however an estimation of the health 
status based on VIs is possible. The application of thresholds can enable 
targeted forestry care efforts to conserve this endangered tree species. 
Given current recommendation to preserve mildly affected ash trees 
rather than remove them (FNR, 2024), identifying trees with mild 
damage is highly relevant. With the ongoing progression of ash dieback, 
accurately identifying mildly damaged ash trees will become increas
ingly important for the long-term conservation of Fraxinus excelsior L.

5. Conclusion

UAV images are an important tool to investigate large areas of ash 
trees affected by ash dieback in a short time. Our study determined that 
UAV images captured during the summer months yield the most 
consistent results, offering comparable VI thresholds. Both RGB and 
multispectral data successfully enabled the generation of multiple VIs 
capable of identifying damage severity due to ash dieback. The thresh
olds derived in this study represent an important advancement for 
assessing extensive areas of affected ash trees, with single indices 
achieving classification accuracies of up to 74.9 % for estimating disease 
severity. The straightforward workflow, along with the specified 
thresholds for various indices, offers forest practitioners an important 
tool for identifying and managing ash dieback damage. However, given 
that our datasets were spatially, and temporally limited, further research 
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focused on refining these thresholds and enhancing classification accu
racy is recommended.
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Deutschland - Ausgewählte Ergebnisse der vierten Bundeswaldinventur.

Cai, N., Zhou, X., Yang, Y., Wang, J., Zhang, D., Hu, R., 2018. Use of UAV images to 
assess narrow brown leaf spot severity in rice. Int. J. Precis. Agric. Aviat. 1 (1), 
38–42. https://doi.org/10.33440/j.ijpaa.20190202.47.

Candiago, S., Remondino, F., Giglio, M. de, Dubbini, M., Gattelli, M., 2015. Evaluating 
multispectral images and vegetation indices for precision farming applications from 
UAV images. Remote Sens. 7 (4), 4026–4047. https://doi.org/10.3390/rs70404026.

Castro, A.I. de, Shi, Y., Maja, J.M., Peña, J.M., 2021. UAVs for vegetation monitoring: 
overview and recent scientific contributions. Remote Sens. 13 (11), 2139. https:// 
doi.org/10.3390/rs13112139.

Chaerle, L., van Caeneghem, W., Messens, E., Lambers, H., van Montagu, M., van der 
Straeten, D., 1999. Presymptomatic visualization of plant–virus interactions by 
thermography. Nat. Biotechnol. 17, 813–816.

Chan, A.H.Y., Barnes, C., Swinfield, T., Coomes, D.A., 2021. Monitoring ash dieback 
(Hymenoscyphus fraxineus) in british forests using hyperspectral remote sensing. 
Remote Sens Ecol. Conserv 7 (2), 306–320. https://doi.org/10.1002/rse2.190.

Chang, A., Yeom, J., Jung, J., Landivar, J., 2020. Comparison of canopy shape and 
vegetation indices of citrus trees derived from UAV multispectral images for 
characterization of citrus greening disease. Remote Sens. 12 (24), 4122. https://doi. 
org/10.3390/rs12244122.

Chicco, D., Jurman, G., 2020. The advantages of the Matthews correlation coefficient 
(MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 
21 (1), 6. https://doi.org/10.1186/s12864-019-6413-7.

Choosumrong, S., Hataitara, R., Sujipuli, K., Weerawatanakorn, M., Preechaharn, A., 
Premjet, D., Laywisadkul, S., Raghavan, V., Panumonwatee, G., 2023. Bananas 
diseases and insect infestations monitoring using multi-spectral camera RTK UAV 
images. Spat. Inf. Res. 31 (4), 371–380. https://doi.org/10.1007/s41324-022- 
00504-y.
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