Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

New methods for quasi-interpolation approximations : Resolution of odd-degree singularities

Titelangaben

Verfügbarkeit überprüfen

Buhmann, Martin ; Jäger, Janin ; Jódar, Joaquín ; Rodriguez, Miguel L.:
New methods for quasi-interpolation approximations : Resolution of odd-degree singularities.
In: Mathematics and computers in simulation : transactions of IMACS / International Association for Mathematics and Computers in Simulation. 223 (September 2024). - S. 50-64.
ISSN 0378-4754 ; 0020-594x

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.matcom.2024.03.032

Kurzfassung/Abstract

In this paper, we study functional approximations where we choose the so-called radial basis function method and more specifically, quasi-interpolation. From the various available approaches to the latter, we form new quasi-Lagrange functions when the orders of the singularities of the radial function’s Fourier transforms at zero do not match the parity of the dimension of the space, and therefore new expansions and coefficients are needed to overcome this problem. We develop explicit constructions of infinite Fourier expansions that provide these coefficients and make an extensive comparison of the approximation qualities and – with a particular focus – polynomial reproduction and uniform approximation order of the various formulae. One of the interesting observations concerns the link between algebraic conditions of expansion coefficients and analytic properties of localness and convergence.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1016/j.matcom.2024.03.032
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:34785
Eingestellt am: 05. Mär 2025 10:55
Letzte Änderung: 05. Mär 2025 10:55
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34785/
AnalyticsGoogle Scholar