Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Neural network approximation and estimation of classifiers with classification boundary in a Barron class

Titelangaben

Verfügbarkeit überprüfen

Caragea, Andrei ; Petersen, Philipp ; Voigtlaender, Felix:
Neural network approximation and estimation of classifiers with classification boundary in a Barron class.
In: The annals of applied probability : an official journal of the Institute of Mathematical Statistics. 33 (2023) 4. - S. 3039-3079.

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1214/22-AAP1884

Kurzfassung/Abstract

We prove bounds for the approximation and estimation of certain binary classification functions using ReLU neural networks. Our estimation bounds provide a priori performance guarantees for empirical risk minimization using networks of a suitable size, depending on the number of training samples available. The obtained approximation and estimation rates are independent of the dimension of the input, showing that the curse of dimensionality can be overcome in this setting; in fact, the input dimension only enters in the form of a polynomial factor. Regarding the regularity of the target classification function, we assume the interfaces between the different classes to be locally of Barron-type. We complement our results by studying the relations between various Barron-type spaces that have been proposed in the literature. These spaces differ substantially more from each other than the current literature suggests.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1214/22-AAP1884
Peer-Review-Journal:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:34772
Eingestellt am: 26. Feb 2025 09:47
Letzte Änderung: 26. Feb 2025 09:47
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34772/
AnalyticsGoogle Scholar