Titelangaben
Kostin, Julia ; Krahmer, Felix ; Stöger, Dominik:
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
In: Applied and computational harmonic analysis. 76 (April 2025): 101746.
ISSN 1063-5203 ; 1096-603x
Volltext
![]() |
Link zum Volltext (externe URL): https://doi.org/10.1016/j.acha.2024.101746 |
Kurzfassung/Abstract
In this paper, we study the problem of recovering two unknown signals from their convolution, which is commonly referred to as blind deconvolution. Reformulation of blind deconvolution as a low-rank recovery problem has led to multiple theoretical recovery guarantees in the past decade due to the success of the nuclear norm minimization heuristic. In particular, in the absence of noise, exact recovery has been established for sufficiently incoherent signals contained in lower-dimensional subspaces. However, if the convolution is corrupted by additive bounded noise, the stability of the recovery problem remains much less understood. In particular, existing reconstruction bounds involve large dimension factors and therefore fail to explain the empirical evidence for dimension-independent robustness of nuclear norm minimization. Recently, theoretical evidence has emerged for ill-posed behaviour of low-rank matrix recovery for sufficiently small noise levels. In this work, we develop improved recovery guarantees for blind deconvolution with adversarial noise which exhibit square-root scaling in the noise level. Hence, our results are consistent with existing counterexamples which speak against linear scaling in the noise level as demonstrated for related low-rank matrix recovery problems.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Blind deconvolution; Nuclear norm minimization; Convex relaxation; Adversarial noise;
Low-rank matrix recovery |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Juniorprofessur für Data Science
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.1016/j.acha.2024.101746 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Academic Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 34208 |
Letzte Änderung: 27. Feb 2025 08:19
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/34208/