Titelangaben
Kümmerle, Christian ; Stöger, Dominik:
Linear Convergence of Iteratively Reweighted Least Squares for Nuclear Norm Minimization.
In: 2024 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM). -
Corvallis, OR, USA : IEEE, 2024
ISBN 979-8-3503-4481-3 ; 979-8-3503-4482-0
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1109/SAM60225.2024.10636588 |
Kurzfassung/Abstract
Low-rank matrix recovery problems are ubiquitous in many areas of science and engineering. One approach to solve these problems is Nuclear Norm Minimization, which is itself computationally challenging to solve. Iteratively Reweighted Least Squares (IRLS) uses a sequence of suitable (re-)weighted least squares problems to minimize the nuclear norm. However, while global convergence guarantees have been established for IRLS in this context, no convergence rates have been known so far. In this paper, we show that an IRLS variant named MatrixIRLS converges to the ground truth solution with a linear rate. Numerical simulations corroborate our theoretical findings.
Weitere Angaben
Publikationsform: | Aufsatz in einem Buch |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Juniorprofessur für Data Science
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.1109/SAM60225.2024.10636588 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Begutachteter Aufsatz: | Ja |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 33682 |
Letzte Änderung: 26. Sep 2024 12:08
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33682/