Titelangaben
Gärttner, Stephan ; Knabner, Peter ; Ray, Nadja:
Local existence of strong solutions to micro–macro models for reactive transport in evolving porous media.
In: European journal of applied mathematics. 35 (2024) 1.
- S. 127-154.
ISSN 0956-7925 ; 1469-4425
Volltext
|
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Namensnennung (CC BY 4.0) . Download (1MB) | Vorschau |
|
Link zum Volltext (externe URL): https://doi.org/10.1017/S095679252300013X |
Kurzfassung/Abstract
Two-scale models pose a promising approach in simulating reactive flow and transport in evolving porous media. Classically, homogenised flow and transport equations are solved on the macroscopic scale, while effective parameters are obtained from auxiliary cell problems on possibly evolving reference geometries (micro-scale). Despite their perspective success in rendering lab/field-scale simulations computationally feasible, analytic results regarding the arising two-scale bilaterally coupled system often restrict to simplified models. In this paper, we first derive smooth dependence results concerning the partial coupling from the underlying geometry to macroscopic quantities. Therefore, alterations of the representative fluid domain are described by smooth paths of diffeomorphisms. Exploiting the gained regularity of the effective space- and time-dependent macroscopic coefficients, we present local-in-time existence results for strong solutions to the partially coupled micro–macro system using fixed-point arguments. What is more, we extend our results to the bilaterally coupled diffusive transport model including a level-set description of the evolving geometry.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data
Science (MIDS)
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Geomatik und Geomathematik |
DOI / URN / ID: | 10.1017/S095679252300013X |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Cambridge University Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 33346 |
Letzte Änderung: 07. Mai 2024 14:10
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33346/