Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Sampling numbers of smoothness classes via ℓ1-minimization

Titelangaben

Verfügbarkeit überprüfen

Jahn, Thomas ; Ullrich, Tino ; Voigtlaender, Felix:
Sampling numbers of smoothness classes via ℓ1-minimization.
In: Journal of complexity. 79 (2023): 101786. - 35 S.
ISSN 0885-064x

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1016/j.jco.2023.101786

Kurzfassung/Abstract

Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in . In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in can be upper bounded by best n-term trigonometric widths in . We describe a recovery procedure from m function values based on -minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to on the d-torus with a logarithmically better rate of convergence than any linear method can achieve when and d is large. This effect is not present for isotropic Sobolev spaces.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:Information based complexity; Rate of convergence; Sampling; Sampling numbers; Smoothness class
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1016/j.jco.2023.101786
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Elsevier
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:33331
Eingestellt am: 02. Mai 2024 12:38
Letzte Änderung: 06. Mai 2024 13:21
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/33331/
AnalyticsGoogle Scholar