Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Robust Recovery of Low-Rank Matrices and Low-Tubal-Rank Tensors from Noisy Sketches

Titelangaben

Verfügbarkeit überprüfen

Ma, Anna ; Stöger, Dominik ; Zhu, Yizhe:
Robust Recovery of Low-Rank Matrices and Low-Tubal-Rank Tensors from Noisy Sketches.
In: SIAM journal on matrix analysis and applications / Society for Industrial and Applied Mathematics, SIAM. 44 (2023) 4. - S. 1566-1588.
ISSN 1095-7162

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1137/22M150071X

Kurzfassung/Abstract

A common approach for compressing large-scale data is through matrix sketching. In this work, we consider the problem of recovering low-rank matrices from two noisy linear sketches using the double sketching scheme discussed in Fazel et al. [Compressed sensing and robust recovery of low rank matrices, in Proceedings of the 42nd IEEE Asilomar Conference on Signals, Systems and Computers, 2008, pp. 1043–1047], which is based on an approach by Woolfe et al. [Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366]. Using tools from nonasymptotic random matrix theory, we provide the first theoretical guarantees characterizing the error between the output of the double sketch algorithm and the ground truth low-rank matrix. We apply our result to the problems of low-rank matrix approximation and low-tubal-rank tensor recovery.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:sketching; low-rank matrix recovery; low-tubal-rank tensor recovery
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Juniorprofessur für Data Science
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
Weitere URLs:
DOI / URN / ID:10.1137/22M150071X
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Society for Industrial and Applied Mathematics
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:32594
Eingestellt am: 27. Okt 2023 07:29
Letzte Änderung: 26. Sep 2024 12:09
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32594/
AnalyticsGoogle Scholar