Titelangaben
Ma, Anna ; Stöger, Dominik ; Zhu, Yizhe:
Robust Recovery of Low-Rank Matrices and Low-Tubal-Rank Tensors from Noisy Sketches.
In: SIAM journal on matrix analysis and applications / Society for Industrial and Applied Mathematics, SIAM. 44 (2023) 4.
- S. 1566-1588.
ISSN 1095-7162
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1137/22M150071X |
Kurzfassung/Abstract
A common approach for compressing large-scale data is through matrix sketching. In this work, we consider the problem of recovering low-rank matrices from two noisy linear sketches using the double sketching scheme discussed in Fazel et al. [Compressed sensing and robust recovery of low rank matrices, in Proceedings of the 42nd IEEE Asilomar Conference on Signals, Systems and Computers, 2008, pp. 1043–1047], which is based on an approach by Woolfe et al. [Appl. Comput. Harmon. Anal., 25 (2008), pp. 335–366]. Using tools from nonasymptotic random matrix theory, we provide the first theoretical guarantees characterizing the error between the output of the double sketch algorithm and the ground truth low-rank matrix. We apply our result to the problems of low-rank matrix approximation and low-tubal-rank tensor recovery.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | sketching; low-rank matrix recovery; low-tubal-rank tensor recovery |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Juniorprofessur für Data Science
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
Weitere URLs: | |
DOI / URN / ID: | 10.1137/22M150071X |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Society for Industrial and Applied Mathematics |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 32594 |
Letzte Änderung: 26. Sep 2024 12:09
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32594/