Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Comparison of uncertainty quantification methods for cloud simulation

Titelangaben

Verfügbarkeit überprüfen

Janjić, Tijana ; Lukáčová-Medviďová, Maria ; Ruckstuhl, Yvonne ; Wiebe, Bettina:
Comparison of uncertainty quantification methods for cloud simulation.
In: Quarterly journal of the Royal Meteorological Society. 149 (2023) 756. - S. 2895-2910.
ISSN 1477-870x ; 0035-9009

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (8MB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1002/qj.4537

Kurzfassung/Abstract

Quantification of evolving uncertainties is required for both probabilistic forecasting and data assimilation in weather prediction. In current practice, the ensemble of model simulations is often used as a primary tool to describe the required uncertainties. In this work, we explore an alternative approach, the so-called stochastic Galerkin (SG) method, which integrates uncertainties forward in time using a spectral approximation in stochastic space. In an idealized two-dimensional model that couples nonhydrostatic weakly compressible Navier–Stokes equations to cloud variables, we first investigate the propagation of initial uncertainty. Propagation of initial perturbations is followed through time for all model variables during two types of forecast: the ensemble forecast and the SG forecast. Series of experiments indicate that differences in performance of the two methods depend on the system state and truncations used. For example, in more stable conditions, the SG method outperforms the ensemble of simulations for every truncation and every variable. However, in unstable conditions, the ensemble of simulations would need more than 100 members (depending on the model variable) and the SG method more than a truncation at five to produce comparable but not identical results. As estimates of the uncertainty are crucial for data assimilation, secondly we instigate the use of these two methods with the stochastic ensemble Kalman filter. The use of the SG method avoids evolution of a large ensemble, which is usually the most expensive component of the data assimilation system, and provides results comparable with the ensemble Kalman filter in the cases investigated.

Weitere Angaben

Publikationsform:Artikel
Schlagwörter:convective scale, data assimilation, ensembles, forecasting (methods), stochastic Galerkin, uncertainty quantification
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Heisenberg Professur für Datenassimilation
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
Weitere URLs:
DOI / URN / ID:10.1002/qj.4537
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Wiley
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:32425
Eingestellt am: 31. Aug 2023 09:11
Letzte Änderung: 11. Apr 2024 09:21
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32425/
AnalyticsGoogle Scholar