Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Extending linear growth functionals to functions of bounded fractional variation

Titelangaben

Verfügbarkeit überprüfen

Schönberger, Hidde:
Extending linear growth functionals to functions of bounded fractional variation.
In: Proceedings / Royal Society of Edinburgh. Section A, Mathematics. (21. Februar 2023). - S. 1-24.
ISSN 0308-2105 ; 0080-4541 ; 1473-7124

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1017/prm.2023.14

Kurzfassung/Abstract

In this paper we consider the minimization of a novel class of fractional linear growth functionals involving the Riesz fractional gradient. These functionals lack the coercivity properties in the fractional Sobolev spaces needed to apply the direct method. We therefore utilize the recently introduced spaces of bounded fractional variation and study the extension of the linear growth functional to these spaces through relaxation with respect to the weak* convergence. Our main result establishes an explicit representation for this relaxation, which includes an integral term accounting for the singular part of the fractional variation and features the quasiconvex envelope of the integrand. The role of quasiconvexity in this fractional framework is explained by a technique to switch between the fractional and classical settings. We complement the relaxation result with an existence theory for minimizers of the extended functional.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis
DOI / URN / ID:10.1017/prm.2023.14
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Soc.
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:32005
Eingestellt am: 14. Apr 2023 10:00
Letzte Änderung: 14. Apr 2023 10:00
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32005/
AnalyticsGoogle Scholar