Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Structural Changes in Nonlocal Denoising Models Arising Through Bi-Level Parameter Learning

Titelangaben

Verfügbarkeit überprüfen

Davoli, Elisa ; Ferreira, Rita ; Kreisbeck, Carolin ; Schönberger, Hidde:
Structural Changes in Nonlocal Denoising Models Arising Through Bi-Level Parameter Learning.
In: Applied mathematics & optimization : an international journal with applications to stochastics. 88 (2023) 9. - 47 S.
ISSN 0095-4616 ; 1432-0606

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (674kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s00245-023-09982-4

Kurzfassung/Abstract

We introduce a unified framework based on bi-level optimization schemes to deal with parameter learning in the context of image processing. The goal is to identify the optimal regularizer within a family depending on a parameter in a general topological space. Our focus lies on the situation with non-compact parameter domains, which is, for example, relevant when the commonly used box constraints are disposed of. To overcome this lack of compactness, we propose a natural extension of the upper-level functional to the closure of the parameter domain via Gamma-convergence, which captures possible structural changes in the reconstruction model at the edge of the domain. Under two main assumptions, namely, Mosco-convergence of the regularizers and uniqueness of minimizers of the lower-level problem, we prove that the extension coincides with the relaxation, thus admitting minimizers that relate to the parameter optimization problem of interest. We apply our abstract framework to investigate a quartet of practically relevant models in image denoising, all featuring nonlocality. The associated families of regularizers exhibit qualitatively different parameter dependence, describing a weight factor, an amount of nonlocality, an integrability exponent, and a fractional order, respectively. After the asymptotic analysis that determines the relaxation in each of the four settings, we finally establish theoretical conditions on the data that guarantee structural stability of the models and give examples of when stability is lost.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis
DOI / URN / ID:10.1007/s00245-023-09982-4
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer Nature
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:32004
Eingestellt am: 14. Apr 2023 09:53
Letzte Änderung: 14. Apr 2023 09:53
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/32004/
AnalyticsGoogle Scholar