Titelangaben
Schulz, Raphael:
Uniqueness of Degenerating Solutions to a Diffusion-Precipitation Model for Clogging Porous Media.
In: Mathematical modelling and analysis. 27 (2022) 3.
- S. 471-491.
ISSN 1648-3510 ; 1392-6292
Volltext
Link zum Volltext (externe URL): https://doi.org/10.3846/mma.2022.15132 |
Kurzfassung/Abstract
The current article presents a degenerating diffusion-precipitation model including vanishing porosity and focuses primarily on uniqueness results. This is accomplished by assuming sufficient conditions under which the uniqueness of weak solutions can be established. Moreover, a proof of existence based on a compactness argument yields rather regular solutions, satisfying these unique conditions. The results show that every strong solution is unique, though a slightly different condition is additionally required in three dimensions. The analysis presents particular challenges due to the nonlinear structure of the underlying problem and the necessity to work with appropriate weights and manage possible degeneration.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | evolving porous media; degenerate equations; clogging; weighted spaces; uniqueness |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.3846/mma.2022.15132 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Vilnius Gediminas Technical University |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 31640 |
Letzte Änderung: 16. Feb 2023 15:29
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/31640/