Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Evaluation of effects of robot-assisted early mobilization on critically ill patients, on the mobilization behaviour and experience of the mobilizing professionals and the organizational processes in an intensive care unit -a clinical intervention study : study protocol

Titelangaben

Verfügbarkeit überprüfen

Warmbein, Angelika ; Schroeder, Ines ; Mehler-Klamt, Amrei Christin ; Rathgeber, Ivanka ; Huber, Jana ; Scharf, Christina ; Hübner, Lucas ; Gutmann, Marcus ; Biebl, Johanna Theresia ; Lorenz, Andreas ; Kraft, Eduard ; Zoller, Michael ; Eberl, Inge ; Fischer, Uli:
Evaluation of effects of robot-assisted early mobilization on critically ill patients, on the mobilization behaviour and experience of the mobilizing professionals and the organizational processes in an intensive care unit -a clinical intervention study : study protocol.
BMC Pilot and Feasability Studies, 2022

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Verfügbar unter folgender Lizenz: Creative Commons: Attribution 4.0 International (CC BY 4.0) Creative Commons: Namensnennung (CC BY 4.0) .

Download (647kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://doi.org/10.21203/rs.3.rs-1339805/v1

Kurzfassung/Abstract

Background: Early mobilization positively influences the outcome of critically ill patients, yet in the clinical practice the implementation is sometimes challenging. In this study, an adaptive robotic assistance system will be used for early mobilization in intensive care units. The study aims to evaluate the experience of the mobilizing professionals, the effects on patient outcomes, and the general feasibility of implementing robotic assistance for mobilization in intensive care.
Methods: The study is monocentric, prospective, interventional, and has multiple time points for data collection. To evaluate the feasibility of robotic-assisted early mobilization, the number of patients included, the number of performed VEM (very early mobilization) sessions, as well as the number and type of adverse events will be collected. The behavior and experience of mobilizing professionals will be evaluated using standardized observations (n>90) and episodic interviews (n>36) before implementation, shortly after, and in routine. Patient outcomes such as duration of mechanical ventilation, loss of muscle mass and physical activity will be measured and compared with a historical patient population. Approximately 30 patients will be included. Discussion: The study will provide information about patient outcomes, feasibility, and the experience of mobilizing professionals. It will show whether robotic systems can increase early mobilization frequency of critically ill patients. Within ICU structures, early mobilization as therapy could become more of a focus. Effects on the mobilizing professionals such as increased motivation, physical relief, or stress will be evaluated. In addition, this study will focus on whether current structures allow following the recommendation of mobilizing patients twice a day for at least 20 minutes. The aim of this study is to evaluate the implementation of a new standard of robotic-assisted early mobilization in the intensive care setting and whether it can be utilized permanently within the current framework.
Trial registration: (clinicaltrials.org TRN: NCT05071248, Date: 2021/10/21) URL https://clinicaltrials.gov/ct2/show/NCT05071248

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Zusätzliche Informationen:Status: Under Review
Schlagwörter:intensive care, robotics, early mobilization, nursing, muscle mass, feasibility
Sprache des Eintrags:Englisch
Institutionen der Universität:Fakultät für Soziale Arbeit (FH) > Professur für Pflegewissenschaft
DOI / URN / ID:10.21203/rs.3.rs-1339805/v1
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:30035
Eingestellt am: 19. Apr 2022 09:04
Letzte Änderung: 19. Apr 2022 13:46
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/30035/
AnalyticsGoogle Scholar