Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Toward Consistent Subgrid Momentum Closures in Ocean Models

Titelangaben

Verfügbarkeit überprüfen

Danilov, Sergey ; Juricke, Stephan ; Kutsenko, Anton ; Oliver, Marcel:
Toward Consistent Subgrid Momentum Closures in Ocean Models.
In: Eden, Carsten ; Iske, Armin (Hrsg.): Energy Transfers in Atmosphere and Ocean. - Cham, Switzerland : Springer, 2019. - S. 145-192. - (Mathematics of Planet Earth ; 1)
ISBN 978-3-030-05704-6 ; 978-3-030-05703-9
ISSN 2524-4272

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/978-3-030-05704-6_5

Kurzfassung/Abstract

State-of-the-art global ocean circulation models used in climate studies are only passing the edge of becoming “eddy-permitting” or barely eddy-resolving. Such models commonly suffer from overdissipation of mesoscale eddies by routinely used subgrid dissipation (viscosity) operators and a resulting depletion of energy in the large-scale structures which are crucial for draining available potential energy into kinetic energy. More broadly, subgrid momentum closures may lead to both overdissipation or pileup of eddy kinetic energy and enstrophy of the smallest resolvable scales. The aim of this chapter is twofold. First, it reviews the theory of two-dimensional and geostrophic turbulence. To a large part, this is textbook material with particular emphasis, however, on issues relevant to modeling the global ocean in the eddy-permitting regime. Second, we discuss several recent parameterizations of subgrid dynamics, including simplified backscatter schemes by Jansen and Held, stochastic superparameterizations by Grooms and Majda, and an empirical backscatter scheme by Mana and Zanna.

Weitere Angaben

Publikationsform:Aufsatz in einem Buch
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1007/978-3-030-05704-6_5
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Titel an der KU entstanden:Nein
KU.edoc-ID:30018
Eingestellt am: 13. Apr 2022 15:12
Letzte Änderung: 06. Jun 2023 15:30
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/30018/
AnalyticsGoogle Scholar