Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

On the Existence of Solutions to a Bi-Planar Monge-Ampère Equation

Titelangaben

Verfügbarkeit überprüfen

Akramov, Ibrokhimbek ; Oliver, Marcel:
On the Existence of Solutions to a Bi-Planar Monge-Ampère Equation.
In: Acta Mathematica Scientia. 40 (2020). - S. 379-388.
ISSN 1003-3998 ; 1572-9087

Volltext

Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s10473-020-0206-6

Kurzfassung/Abstract

In this article, we consider a fully nonlinear partial differential equation which can be expressed as a sum of two Monge-Ampère operators acting in different two-dimensional coordinate sections. This equation is elliptic, for example, in the class of convex functions. We show that the notion of Monge-Ampère measures and Aleksandrov generalized solutions extends to this equation, subject to a weaker notion of convexity which we call bi-planar convexity. While the equation is also elliptic in the class of bi-planar convex functions, the contrary is not necessarily true. This is a substantial difference compared to the classical Monge-Ampère equation where ellipticity and convexity coincide. We provide explicit counter-examples: classical solutions to the bi-planar equation that satisfy the ellipticity condition but are not generalized solutions in the sense introduced. We conclude that the concept of generalized solutions based on convexity arguments is not a natural setting for the bi-planar equation.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:10.1007/s10473-020-0206-6
Open Access: Freie Zugänglichkeit des Volltexts?:Nein
Peer-Review-Journal:Ja
Verlag:Kexue Chubanske
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Nein
KU.edoc-ID:30008
Eingestellt am: 25. Apr 2022 14:07
Letzte Änderung: 07. Jun 2023 10:35
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/30008/
AnalyticsGoogle Scholar