Titelangaben
Akramov, Ibrokhimbek ; Oliver, Marcel:
On the Existence of Solutions to a Bi-Planar Monge-Ampère Equation.
In: Acta Mathematica Scientia. 40 (2020).
- S. 379-388.
ISSN 1003-3998 ; 1572-9087
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1007/s10473-020-0206-6 |
Kurzfassung/Abstract
In this article, we consider a fully nonlinear partial differential equation which can be expressed as a sum of two Monge-Ampère operators acting in different two-dimensional coordinate sections. This equation is elliptic, for example, in the class of convex functions. We show that the notion of Monge-Ampère measures and Aleksandrov generalized solutions extends to this equation, subject to a weaker notion of convexity which we call bi-planar convexity. While the equation is also elliptic in the class of bi-planar convex functions, the contrary is not necessarily true. This is a substantial difference compared to the classical Monge-Ampère equation where ellipticity and convexity coincide. We provide explicit counter-examples: classical solutions to the bi-planar equation that satisfy the ellipticity condition but are not generalized solutions in the sense introduced. We conclude that the concept of generalized solutions based on convexity arguments is not a natural setting for the bi-planar equation.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Angewandte Mathematik
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.1007/s10473-020-0206-6 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Kexue Chubanske |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 30008 |
Letzte Änderung: 07. Jun 2023 10:35
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/30008/