Titelangaben
Voigtlaender, Felix:
The universal approximation theorem for complex-valued neural networks.
2020. - 29 S.
Volltext
Link zum Volltext (externe URL): https://arxiv.org/abs/2012.03351 |
Kurzfassung/Abstract
We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function σ:C→C in which each neuron performs the operation CN→C,z↦σ(b+wTz) with weights w∈CN and a bias b∈C, and with σ applied componentwise. We completely characterize those activation functions σ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of Cd arbitrarily well.
Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as σ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of σ is not a polyharmonic function.
Weitere Angaben
Publikationsform: | Preprint, Working paper, Diskussionspapier |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | arXiv:2012.03351 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 29927 |
Letzte Änderung: 06. Jun 2023 10:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29927/