Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

The universal approximation theorem for complex-valued neural networks

Titelangaben

Verfügbarkeit überprüfen

Voigtlaender, Felix:
The universal approximation theorem for complex-valued neural networks.
2020. - 29 S.

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://arxiv.org/abs/2012.03351

Kurzfassung/Abstract

We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function σ:C→C in which each neuron performs the operation CN→C,z↦σ(b+wTz) with weights w∈CN and a bias b∈C, and with σ applied componentwise. We completely characterize those activation functions σ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of Cd arbitrarily well.
Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as σ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of σ is not a polyharmonic function.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:arXiv:2012.03351
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Nein
KU.edoc-ID:29927
Eingestellt am: 30. Mär 2022 14:25
Letzte Änderung: 06. Jun 2023 10:59
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29927/
AnalyticsGoogle Scholar