Titelangaben
Voigtlaender, Felix ; Petersen, Philipp:
Optimal learning of high-dimensional classification problems using deep neural networks.
2021. - 41 S.
Volltext
Link zum Volltext (externe URL): https://arxiv.org/abs/2112.12555 |
Kurzfassung/Abstract
We study the problem of learning classification functions from noiseless training samples, under the assumption that the decision boundary is of a certain regularity. We establish universal lower bounds for this estimation problem, for general classes of continuous decision boundaries. For the class of locally Barron-regular decision boundaries, we find that the optimal estimation rates are essentially independent of the underlying dimension and can be realized by empirical risk minimization methods over a suitable class of deep neural networks. These results are based on novel estimates of the L1 and L∞ entropies of the class of Barron-regular functions.
Weitere Angaben
Publikationsform: | Preprint, Working paper, Diskussionspapier |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | arXiv:2112.12555 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 29922 |
Letzte Änderung: 06. Jun 2023 11:04
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29922/