Titelangaben
Geppert, Jakob ; Krahmer, Felix ; Stöger, Dominik:
Sparse power factorization : balancing peakiness and sample complexity.
In: Advances in computational mathematics. 45 (1. Juni 2019).
- S. 1711-1728.
ISSN 1019-7168 ; 1572-9044
Volltext
Link zum Volltext (externe URL): https://link.springer.com/article/10.1007/s10444-0... |
Kurzfassung/Abstract
In many applications, one is faced with an inverse problem, where the known signal depends in a bilinear way on two unknown input vectors. Often at least one of the input vectors is assumed to be sparse, i.e., to have only few non-zero entries. Sparse power factorization (SPF), proposed by Lee, Wu, and Bresler, aims to tackle this problem. They have established recovery guarantees for a somewhat restrictive class of signals under the assumption that the measurements are random. We generalize these recovery guarantees to a significantly enlarged and more realistic signal class at the expense of a moderately increased number of measurements.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Bilinear inverse problems, Sparse power factorization, Compressed sensing |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Juniorprofessur für Data Science
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
DOI / URN / ID: | 10.1007/s10444-019-09698-6 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | Springer Science |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 29061 |
Letzte Änderung: 27. Sep 2024 13:53
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/29061/