Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

A General Version of Price’s Theorem

Titelangaben

Verfügbarkeit überprüfen

Voigtlaender, Felix:
A General Version of Price’s Theorem.
In: Journal of theoretical probability. 34 (2021). - S. 1474-1485.
ISSN 0894-9840 ; 1572-9230

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://doi.org/10.1007/s10959-020-01017-w

Kurzfassung/Abstract

Assume that XΣ∈Rn is a centered random vector following a multivariate normal distribution with positive definite covariance matrix Σ. Let g:Rn→C be measurable and of moderate growth, say |g(x)|≲(1+|x|)N. We show that the map Σ↦E[g(XΣ)] is smooth, and we derive convenient expressions for its partial derivatives, in terms of certain expectations E[(∂αg)(XΣ)] of partial (distributional) derivatives of g. As we discuss, this result can be used to derive bounds for the expectation E[g(XΣ)] of a nonlinear function g(XΣ) of a Gaussian random vector XΣ with possibly correlated entries. For the case when g(x)=g1(x1)⋯gn(xn) has tensor-product structure, the above result is known in the engineering literature as Price’s theorem, originally published in 1958. For dimension n=2, it was generalized in 1964 by McMahon to the general case g:R2→C. Our contribution is to unify these results, and to give a mathematically fully rigorous proof. Precisely, we consider a normally distributed random vector XΣ∈Rn of arbitrary dimension n∈N, and we allow the nonlinearity g to be a general tempered distribution. To this end, we replace the expectation E[g(XΣ)] by the dual pairing ⟨g,ϕΣ⟩S′,S, where ϕΣ denotes the probability density function of XΣ.

Weitere Angaben

Publikationsform:Artikel
Sprache des Eintrags:Deutsch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
Weitere URLs:
DOI / URN / ID:10.1007/s10959-020-01017-w
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Peer-Review-Journal:Ja
Verlag:Springer
Die Zeitschrift ist nachgewiesen in:
Titel an der KU entstanden:Ja
KU.edoc-ID:26833
Eingestellt am: 14. Jun 2021 14:31
Letzte Änderung: 06. Jun 2023 11:07
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26833/
AnalyticsGoogle Scholar