Titelangaben
Voigtlaender, Felix:
A General Version of Price’s Theorem.
In: Journal of theoretical probability. 34 (2021).
- S. 1474-1485.
ISSN 0894-9840 ; 1572-9230
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1007/s10959-020-01017-w |
Kurzfassung/Abstract
Assume that XΣ∈Rn is a centered random vector following a multivariate normal distribution with positive definite covariance matrix Σ. Let g:Rn→C be measurable and of moderate growth, say |g(x)|≲(1+|x|)N. We show that the map Σ↦E[g(XΣ)] is smooth, and we derive convenient expressions for its partial derivatives, in terms of certain expectations E[(∂αg)(XΣ)] of partial (distributional) derivatives of g. As we discuss, this result can be used to derive bounds for the expectation E[g(XΣ)] of a nonlinear function g(XΣ) of a Gaussian random vector XΣ with possibly correlated entries. For the case when g(x)=g1(x1)⋯gn(xn) has tensor-product structure, the above result is known in the engineering literature as Price’s theorem, originally published in 1958. For dimension n=2, it was generalized in 1964 by McMahon to the general case g:R2→C. Our contribution is to unify these results, and to give a mathematically fully rigorous proof. Precisely, we consider a normally distributed random vector XΣ∈Rn of arbitrary dimension n∈N, and we allow the nonlinearity g to be a general tempered distribution. To this end, we replace the expectation E[g(XΣ)] by the dual pairing ⟨g,ϕΣ⟩S′,S, where ϕΣ denotes the probability density function of XΣ.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Deutsch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS) |
Weitere URLs: | |
DOI / URN / ID: | 10.1007/s10959-020-01017-w |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Springer |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Ja |
KU.edoc-ID: | 26833 |
Letzte Änderung: 06. Jun 2023 11:07
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26833/