Titelangaben
Kreisbeck, Carolin ; Engl, Dominik:
Asymptotic variational analysis of incompressible elastic strings.
In: Proceedings of the Royal Society of Edinburgh / Section A, Mathematics. 151 (2021) 5.
- S. 1487-1514.
ISSN 0308-2105 ; 0080-4541
Volltext
Link zum Volltext (externe URL): https://doi.org/10.1017/prm.2020.70 |
Kurzfassung/Abstract
Starting from three-dimensional non-linear elasticity under the restriction of incompressibility, we derive reduced models to capture the behaviour of strings in response to external forces. Our Γ-convergence analysis of the constrained energy functionals in the limit of shrinking cross-sections gives rise to explicit one-dimensional limit energies. The latter depend on the scaling of the applied forces. The effect of local volume preservation is reflected either in their energy densities through a constrained minimization over the cross-section variables or in the class of admissible deformations. Interestingly, all scaling regimes allow for compression and/or stretching of the string. The main difficulty in the proof of the Γ-limit is to establish recovery sequences that accommodate the non-linear differential constraint imposed by the incompressibility. To this end, we modify classical constructions in the unconstrained case with the help of an inner perturbation argument tailored for 3d-1d dimension reduction problems.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis |
DOI / URN / ID: | 10.1017/prm.2020.70 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Ja |
Peer-Review-Journal: | Ja |
Verlag: | Soc. |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 26813 |
Letzte Änderung: 09. Aug 2024 13:08
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26813/