Titelangaben
Engl, Dominik ; Kreisbeck, Carolin:
Theories for incompressible rods: A rigorous derivation via Gamma-convergence.
In: Asymptotic analysis. 124 (2021) 1-2.
- S. 1-28.
ISSN 0921-7134 ; 1875-8576
Volltext
Link zum Volltext (externe URL): https://doi.org/10.3233/ASY-201636 |
Kurzfassung/Abstract
We use variational convergence to derive a hierarchy of one-dimensional rod theories, starting out from three-dimensional models in nonlinear elasticity subject to local volume-preservation. The densities of the resulting Γ-limits are determined by minimization problems with a trace constraint that arises from the linearization of the determinant condition of incompressibility. While the proofs of the lower bounds rely on suitable constraint regularization, the upper bounds require a careful, explicit construction of locally volume-preserving recovery sequences. After decoupling the cross-section variables with the help of divergence-free extensions, we apply an inner perturbation argument to enforce the desired non-convex determinant constraint. To illustrate our findings, we discuss the special case of isotropic materials.
Weitere Angaben
Publikationsform: | Artikel |
---|---|
Schlagwörter: | Dimension reduction, Γ-convergence, Euler–Lagrange equations, incompressibility, rods |
Sprache des Eintrags: | Englisch |
Institutionen der Universität: | Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Analysis |
DOI / URN / ID: | 10.3233/ASY-201636 |
Open Access: Freie Zugänglichkeit des Volltexts?: | Nein |
Peer-Review-Journal: | Ja |
Verlag: | IOS-Press |
Die Zeitschrift ist nachgewiesen in: | |
Titel an der KU entstanden: | Nein |
KU.edoc-ID: | 26809 |
Letzte Änderung: 09. Aug 2024 13:06
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/26809/