Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Equivalence of approximation by convolutional neural networks and fully-connected networks

Titelangaben

Verfügbarkeit überprüfen

Petersen, Philipp ; Voigtlaender, Felix:
Equivalence of approximation by convolutional neural networks and fully-connected networks.
2018. - 13 S.

Volltext

Open Access
Volltext Link zum Volltext (externe URL):
https://arxiv.org/abs/1809.00973

Kurzfassung/Abstract

Convolutional neural networks are the most widely used type of neural networks in applications. In mathematical analysis, however, mostly fully-connected networks are studied. In this paper, we establish a connection between both network architectures. Using this connection, we show that all upper and lower bounds concerning approximation rates of {fully-connected} neural networks for functions f∈C -- for an arbitrary function class C -- translate to essentially the same bounds concerning approximation rates of convolutional neural networks for functions f∈Cequi, with the class Cequi consisting of all translation equivariant functions whose first coordinate belongs to C. All presented results consider exclusively the case of convolutional neural networks without any pooling operation and with circular convolutions, i.e., not based on zero-padding.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Sprache des Eintrags:Englisch
Institutionen der Universität:Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Wissenschaftliches Rechnen
Mathematisch-Geographische Fakultät > Mathematik > Lehrstuhl für Mathematik - Reliable Machine Learning
Mathematisch-Geographische Fakultät > Mathematik > Mathematisches Institut für Maschinelles Lernen und Data Science (MIDS)
DOI / URN / ID:arXiv:1809.00973
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:23465
Eingestellt am: 22. Okt 2019 15:05
Letzte Änderung: 01. Jun 2023 15:42
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/23465/
AnalyticsGoogle Scholar