Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren

 

Explaining Preference Heterogeneity with Mixed Membership Modeling

Titelangaben

Verfügbarkeit überprüfen

Dotson, Marc R. ; Büschken, Joachim ; Allenby, Greg M.:
Explaining Preference Heterogeneity with Mixed Membership Modeling.
Ingolstadt : Katholische Universität Eichstätt-Ingolstadt, 2017. - 53 S.

Volltext

Open Access
[img]
Vorschau
Text (PDF)
Download (421kB) | Vorschau
Volltext Link zum Volltext (externe URL):
https://dx.doi.org/10.2139/ssrn.2758644

Kurzfassung/Abstract

Choice models produce part-worth estimates that tell us what product attributes individuals prefer. However, to understand the drivers of these preferences we need to model consumer heterogeneity by specifying covariates that explain cross-sectional variation in the part-worths. In this paper we demonstrate a way to generate covariates for the upper level of a hierarchical Bayesian choice model that leads to an improvement in explaining preference heterogeneity. The covariates are uncovered by augmenting the choice model with a grade of membership model. We find improvement in model fit and inference using the covariates generated with the proposed integrated model over competing models. This paper provides an important step in both a proper accounting for extremes in preference heterogeneity and a continued synthesis between marketing models and mixed membership models, which include models for text data.

Weitere Angaben

Publikationsform:Preprint, Working paper, Diskussionspapier
Schlagwörter:Choice models, mixed membership models, hierarchical Bayes, grade of membership, preference heterogeneity
Sprache des Eintrags:Englisch
Institutionen der Universität:Wirtschaftswissenschaftliche Fakultät > Betriebswirtschaftslehre > ABWL, Absatzwirtschaft und Marketing
DOI / URN / ID:10.2139/ssrn.2758644
Open Access: Freie Zugänglichkeit des Volltexts?:Ja
Titel an der KU entstanden:Ja
KU.edoc-ID:20307
Eingestellt am: 16. Aug 2017 10:45
Letzte Änderung: 02. Jan 2022 17:46
URL zu dieser Anzeige: https://edoc.ku.de/id/eprint/20307/
AnalyticsGoogle Scholar