Suche nach Personen

plus im Publikationsserver
plus bei BASE
plus bei Google Scholar

Daten exportieren


Image-based surface reconstruction in geomorphometry – merits, limits and developments


Verfügbarkeit überprüfen

Eltner, Anette ; Kaiser, Andreas ; Castillo, Carlos ; Rock, Gilles ; Neugirg, Fabian ; Abellán, Antonio:
Image-based surface reconstruction in geomorphometry – merits, limits and developments.
In: Earth surface dynamics. 4 (19. Mai 2016) 2. - S. 359-389.
ISSN 2196-6311



Photogrammetry and geosciences have been closely linked since the late 19th century due to the acquisition of high-quality 3-D data sets of the environment, but it has so far been restricted to a limited range of remote sensing specialists because of the considerable cost of metric systems for the acquisition and treatment of airborne imagery. Today, a wide range of commercial and open-source software tools enable the generation of 3-D and 4-D models of complex geomorphological features by geoscientists and other non-experts users. In addition, very recent rapid developments in unmanned aerial vehicle (UAV) technology allow for the flexible generation of high-quality aerial surveying and ortho-photography at a relatively low cost.

The increasing computing capabilities during the last decade, together with the development of high-performance digital sensors and the important software innovations developed by computer-based vision and visual perception research fields, have extended the rigorous processing of stereoscopic image data to a 3-D point cloud generation from a series of non-calibrated images. Structure-from-motion (SfM) workflows are based upon algorithms for efficient and automatic orientation of large image sets without further data acquisition information, examples including robust feature detectors like the scale-invariant feature transform for 2-D imagery. Nevertheless, the importance of carrying out well-established fieldwork strategies, using proper camera settings, ground control points and ground truth for understanding the different sources of errors, still needs to be adapted in the common scientific practice.

This review intends not only to summarise the current state of the art on using SfM workflows in geomorphometry but also to give an overview of terms and fields of application. Furthermore, this article aims to quantify already achieved accuracies and used scales, using different strategies in order to evaluate possible stagnations of current developments and to identify key future challenges. It is our belief that some lessons learned from former articles, scientific reports and book chapters concerning the identification of common errors or "bad practices" and some other valuable information may help in guiding the future use of SfM photogrammetry in geosciences.

Weitere Angaben

Schlagwörter:SfM; Photogrammetrie; photogrammetry; Structure from Motion; UAV
Institutionen der Universität:Mathematisch-Geographische Fakultät > Geographie > Lehrstuhl für Physische Geographie
Weitere URLs:
Titel an der KU entstanden:Ja
Eingestellt am: 13. Jun 2016 14:22
Letzte Änderung: 21. Jun 2016 10:00
URL zu dieser Anzeige:
AnalyticsGoogle Scholar